- 免费像素画绘制软件 | Pixelorama v1.0.3
dntktop
软件运维windows
Pixelorama是一款开源像素艺术多工具软件,旨在为用户提供一个强大且易于使用的平台来创作各种像素艺术作品,包括精灵、瓷砖和动画。这款软件以其丰富的工具箱、动画支持、像素完美模式、剪裁遮罩、预制及可导入的调色板等特色功能,满足了像素艺术家们的各种需求。用户可以享受到动态工具映射、洋葱皮效果、帧标签、播放动画时绘制等高级功能,以及非破坏性的、完全可定制的图层效果,如轮廓、渐变映射、阴影和调色板化
- 昇思MindSpore AI框架MindFormers实践3:ChatGLM3-6B对一段文字进行提取
skywalk8163
人工智能项目实践人工智能mindspore
MindSpore和MindFormers安装参见:昇思AI框架实践1:安装MindSpoe和MindFormers_miniconda安装mindspore-CSDN博客使用了MindSpore2.2和MindFormers1.0支持的模型:KeyError:"modelmustbeinodict_keys(['gpt2','gpt2_lora','gpt2_xl','gpt2_xl_lora'
- 一文看懂物联网通信技术
SEEKSEE AIoT
物联网
无线通信传输是实现万物互联的重要环节,其在传输速度及成本方面具有显著优势。今天我们将一起聊聊物联网无线通信的几种常见类型,了解其优势及应用。你好!物联网的无线通信技术种类繁多,从通信距离上可分为短距离(近距离)无线通信技术和低功耗广域网(远距离)通信技术。近距离通信技术包括Wi-Fi、蓝牙、ZigBee等,远距离通信技术以2G/3G/4G/5G、LPWAN(NB-IoT、eMTC、LoRa等)为代
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-unsloth(让微调起飞)-单机单卡-V100(十七)
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言本篇文章将在v100单卡服务器上,使用unsloth去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。使用unsloth能够使模型的微调速度提高2-5倍。在处理大规模数据或对时间要求较高的场景下,这可以大大节省微调所需的时间,提高开发效率。其次,可减少80%的内存使用。这对于资源有限的环境或者需要同时运行多个微调任务的
- 大模型微调 - 基于预训练大语言模型的对话生成任务 训练代码
西笑生
大模型大模型自然语言处理微调
大模型微调-基于预训练大语言模型的对话生成任务训练代码flyfish模型扮演堂吉诃德这个角色,回答关于自我介绍的问题importtorchfromdatasetsimportDatasetfrommodelscopeimportAutoTokenizer,AutoModelForCausalLMfrompeftimportLoraConfig,TaskType,get_peft_modelfrom
- QLoRa使用教程
云帆@
训练peft人工智能
一、定义定义案例1二、实现定义QLoRa:量化+LoRa.网址:https://huggingface.co/docs/peft/main/en/developer_guides/quantization案例11.4bit量化+LoRaimporttorchfromtransformersimportBitsAndBytesConfigconfig=BitsAndBytesConfig(load_
- 大模型基础知识-LoRA与QLoRA
破壁者-燕
深度学习
介绍LoRA与QLoRA1.LoRA(Low-RankAdaptation)LoRA是一种用于大规模语言模型(LLM)的参数高效微调技术,旨在减少微调大模型所需的计算资源和存储空间。LoRA的核心思想是将全量参数更新分解为低秩矩阵的形式,从而显著减少参数数量和计算开销。核心思想:低秩分解:将大模型的权重矩阵表示为两个低秩矩阵的乘积。这种分解方法不仅保留了原始模型的表示能力,还显著减少了微调过程中需
- 通感算一体化:(一)初步阐明定义和挑战
炸膛坦客
无线感知信息与通信自动驾驶智慧城市
常用的无线感知波无线电波频率高于300MHz的电磁波为微波波段,频率不同、波长不同、传输距离也各不相同。这类微波波长短,绕射能力差,往往用作视距(LoS)或者超视距中继通信。下面将分别介绍微波波段的几种代表性技术:WiFi、mmWave、UWB、Bluetooth、RFID、(NFC、ZigBee、LoRa、NB-IoT)这几种常见技术。前五种见于无线感知领域,后四种包括现在的5G、LTE等多用于
- 深度学习速通系列:LoRA微调是什么
Ven%
深度学习速通系列人工智能深度学习python机器学习nlp
LoRA微调(Low-RankAdaptation)是一种用于大型预训练语言模型(LLM)的高效微调技术。它的核心思想是在不改变预训练模型权重的前提下,通过在模型的Transformer层中引入可训练的低秩矩阵来实现模型的微调。这种方法可以显著减少训练参数的数量,从而降低对计算资源的需求。LoRA微调的原理:LoRA微调方法建议冻结预训练模型的权重,并在每个Transformer块中注入可训练的低
- 大模型LLM面试常见算法题-包括Attention和Transformer常见面试题
剑圣土豆
算法面试大模型学习自然语言处理transformer算法nlp自然语言处理面试深度学习人工智能
大模型:位置编码有哪些?介绍LoRA与QLoRARAG和微调的区别是什么?哪些因素会导致LLM的偏见?什么是思维链(CoT)提示?Tokenizer的实现方法及原理解释一下大模型的涌现能力?解释langchainAgent的概念langchain有哪些替代方案?RLHF完整训练过程是什么?为什么RLHF的效果这么好?RLHF使用的训练数据是什么样的?RAG和微调的区别是什么?有了解过什么是稀疏微调
- [Lora][微调] Qwen-VL/Qwen-VL-chat微调问题
翔迅AI
python
@[Lora][微调]Qwen-VL/Qwen-VL-chat微调问题关于Qwen-VL在lora过程中出现的问题总结。模型预训练错误一“erfinv_cuda”notimplementedfor‘BFloat16’RuntimeError:"erfinv_cuda"notimplementedfor'BFloat16'参考github中issue253给出的意见,修改Qwen-VL-Chat/v
- 2023-07-12
大法师的输出
模型:xxmix9realistic_v30LoRA:,,,室内、起居室、咖啡杯等构建环境氛围效果图1(SFW:2),HDR,UHD,8K,bestquality,masterpiece,Highlydetailed,Studiolighting,ultra-finepainting,sharpfocus,physically-basedrendering,extremedetaildescrip
- 【神经网络系列(高级)】神经网络Grokking现象的电路效率公式——揭秘学习飞跃的秘密【通俗理解】
神经美学_茂森
神经网络人工智能算法神经网络学习人工智能
【通俗理解】神经网络Grokking现象的电路效率公式论文地址:https://arxiv.org/abs/2309.02390参考链接:[1]https://x.com/VikrantVarma_/status/1699823229307699305[2]https://pair.withgoogle.com/explorables/grokking/关键词提炼#Grokking现象#神经网络#
- 记录-小程序720°VR(跳转H5页面实现)
久违的小技巧
小程序小程序vrjavascript
全景浏览提前准备1拍照支架/照片合成软件(KolorAutopanoGiga4.0)或者全景相机2pannellum(pannellum是一个轻量级、免费和开源的Web全景查看器。它使用HTML5、CSS3、JavaScript和WebGL构建,没有插件。)3H5页面引入pannellum.js/css文件,swiper/jquery文件(因为需要在全景图底部显示可切换图片,与dom操作/ajax
- 大模型推理框架 RTP-LLM 架构解析
阿里技术
架构LLM推理阿里巴巴RPT
RTP-LLM是阿里巴巴智能引擎团队推出的大模型推理框架,支持了包括淘宝、天猫、闲鱼、菜鸟、高德、饿了么、AE、Lazada等多个业务的大模型推理场景。RTP-LLM与当前广泛使用的多种主流模型兼容,使用高性能的CUDAkernel,包括PagedAttention、FlashAttention、FlashDecoding等,支持多模态、LoRA、P-Tuning、以及WeightOnly动态量化
- flux 文生图大模型 自有数据集 lora微调训练案例
loong_XL
深度学习fluxaigcsd文生图多模态
参考:https://github.com/ostris/ai-toolkit目前Flux出现了3个训练工具SimpleTunerhttps://github.com/bghira/SimpleTunerX-LABS的https://github.com/XLabs-AI/x-fluxai-toolkithttps://github.com/ostris/ai-toolkit待支持:https:/
- 【WPF动画】
TIF星空
WPF分享wpf经验分享c#
关于WPF中System.Windows.Media.Animation命名空间下常用动画类的简要介绍、使用方法和适用场景的表格使用场景解释:示例代码1示例代码2:使用`Storyboard`组合多个动画代码解释应用场景动画类描述使用示例适用场景DoubleAnimation用于为double类型的属性(如Width,Height等)创建动画。xml控件大小的变化、透明度的渐变等。ColorAni
- Flutter Theme Tailor Annotation使用指南:自定义主题注解
明似水
flutterflutterandroid
FlutterThemeTailorAnnotation使用指南:自定义主题注解简介theme_tailor_annotation是一个Dart注解包,它与ThemeTailor代码生成器配合使用,用于帮助开发者自定义Flutter应用的主题。ThemeTailor允许开发者通过注解来定义主题相关的属性,然后自动生成相应的主题代码。主要功能注解定义:使用注解来定义主题的属性和值。代码生成:自动生成
- Flora女王的感恩日记
Flora女王
2019.07.31Flora女王的感恩日记感恩我的宇宙哥哥每天都把我照顾的那么好,谢谢,谢谢,谢谢!感恩今天去医院做身体检查医院里的人不是很多我可以顺利完成,谢谢,谢谢,谢谢!感恩今天去医院拿很久以前的一份报告工作人员为我去翻查记录,谢谢,谢谢,谢谢!感恩我的钱宝宝服务于我,现在我可以细细的感受自己要买的每一件物品是否是自己真是所需,谢谢,谢谢,谢谢!感恩今天与公子欢分享我的奇迹时感受到了她的那
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-ms-swift-单机单卡-V100(十二)
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言本篇文章将在v100单卡服务器上,使用ms-swift去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量
- 2023-07-02
大法师的输出
大模型:breakdomainrealistic_R2333LoRA:,效果图(SFW:2),HDR,UHD,8K,bestquality,masterpiece,Highlydetailed,Studiolighting,ultra-finepainting,sharpfocus,physically-basedrendering,extremedetaildescription,Profess
- 学习 Rust:I/O Ring
老父亲的能量嘎嘣脆
rust学习后端开发语言职场和发展
Areyoudisappointedwithselect,poll,epollorAIO?TryoutthebestI/OpromiseintheLinuxlandscape.您对select、poll、epoll或AIO感到失望吗?尝试Linux环境中最佳的I/O承诺。LinuxhasarichhistoryinmanagingI/Ooperations.Somemechanisms,likes
- 2022-2023学年英语周报九年级第10期答案及试题(初三第十期)
gaokaos
阅读理解:CastleRock,Colorado,isintheFrontRange进入查看:2022-2023学年英语周报九年级第10期答案及试题(初三第十期)CastleRock,Colorado,isintheFrontRangebetweenDenverandColoradoSprings.Thetownwasfirstsettledinthe1870sandnamedfortherock
- 数据科学生命周期的7个步骤–在业务中应用AI
听忆.
人工智能
数据科学生命周期的7个步骤–在业务中应用AI1.问题定义(BusinessUnderstanding)2.数据收集(DataCollection)3.数据准备(DataPreparation)4.数据探索(ExploratoryDataAnalysis,EDA)5.模型构建(Modeling)6.模型评估(Evaluation)7.模型部署与维护(DeploymentandMaintenance)
- NB-IoT,LoRA,WIFI,蓝牙,Zigbee,MQTT,CoAP之间的关系
hanchufeng2020
物联网
概览(从上往下)应用层协议:MQTT、CoAP...网络层、传输协议:IPv4、IPv6、TCP、6LoWPAN、RPL物理层、数据链路层协议:近距离通信:Dash、NFC、Bluetooth、RFID、IRdA...远距离蜂窝通信:GSM(2G)、WCDMA(3G)、LTE(3.9G)、TD-LTE(4G)、NB-IOT...远距离非蜂窝通信:ZigBee、WiFi、Z-Wave、wHART、L
- 大模型18:微调大模型方法PEFT(LoRA等) — 训练 “ChatGLM2“ 项目
bluewelkin
大模型
微调大模型的方法之一是PEFT(Parameter-EfficientFine-Tuning),其中包括LoRA(Low-RankAdaptation)等技术。PEFT方法能够在不显著增加计算资源消耗的情况下,微调大模型,从而适应特定任务。这种方法特别适用于像“ChatGLM2”这样的预训练大模型。什么是PEFT(Parameter-EfficientFine-Tuning)?PEFT是一种优化微
- 大模型微调方法总结:LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning
百度_开发者中心
prompt人工智能大模型
随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。LoRA(LearnedRepresentationsforFinetuning)LoRA是
- 大模型微调技术(Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuning v2、LoRA)_adapter微调 p tuning
Cc不爱吃洋葱
prompt
2022年11月30日,ChatGPT发布至今,国内外不断涌现出了不少大模型,呈现“百模大战”的景象,比如ChatGLM-6B、LLAMA、Alpaca等模型及在此模型基础上进一步开发的特定领域的大模型。今年3月15日,GPT-4发布后,也出现了一些多模态的大模型,比如百度的文心一言、讯飞星火认知大模型等等。要想训练一个针对特定领域的大模型,如果采用全量参数微调(FullParameterFutu
- 欺诈文本分类微调(六):Lora单卡训练
沉下心来学鲁班
微调分类人工智能机器学习语言模型微调
1.引言前面欺诈文本分类微调(四):构造训练/测试数据集已经构造出了数据集,更之前的欺诈文本分类微调(一):基座模型选型选好了基座模型,这篇文章将基于构造出的数据集和选定的模型进行欺诈文本分类的微调训练。关于微调方法,我们将使用比较普遍的Lora:在模型中注入低秩矩阵的方式。关于训练器,使用transformers库中提供的Trainer类。2.数据准备2.1加载数据导入要使用的基础包。impor
- 智慧路灯杆会用到哪些通信方式
ianvtenr
智慧城市智慧路灯杆物联网
智慧路灯杆系统的通信方式通常包括有线通信和无线通信。有线通信可采用光纤、网线、电力线载波等方式,且一般以光纤和网线为主,电力线载波为备选;无线通信可采用NB-IoT、3G/4G/5G、LoRa、ZigBee等方式。一、智慧路灯杆有线通信方式:主要是让边缘端的杆载设备链接到智慧灯杆网关,亦可让网关通过光纤链接到云平台系统。1、光纤通信:支持对接包括杆载WiFiAP、手拉手环形组网等应用。2、网线:网
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end