本文提供yolov5-tensorrt加速方法。
有源码!有源码!有源码! 不要慌,哈哈哈。
下图右边是yolov5s部署之后,tensorrt部署效果,和python推理结果一致。
如果您对tensorrt不是很熟悉,请务必保持下面库版本一致。
请注意: Linux系统安装以下库,务必去进入系统bios下,关闭安全启动(设置 secure boot 为 disable)
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install git
sudo apt-get install gdb
sudo apt-get install cmake
sudo apt-get install libopencv-dev
# pkg-config --modversion opencv
注:Nvidia相关网站需要注册账号。
ubuntu-drivers devices
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-driver-470-server # for ubuntu18.04
nvidia-smi
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run
cuda的安装过程中,需要你在bash窗口手动作一些选择,这里选择如下:
#===========
#= Summary =
#===========
#Driver: Not Selected
#Toolkit: Installed in /usr/local/cuda-11.3/
#......
把cuda添加到环境变量:
vim ~/.bashrc
把下面拷贝到 .bashrc里面
# cuda v11.3
export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda-11.3
刷新环境变量和验证
source ~/.bashrc
nvcc -V
bash窗口打印如下信息表示cuda11.3安装正常
nvcc: NVIDIA (R) Cuda compiler driver<br>
Copyright (c) 2005-2021 NVIDIA Corporation<br>
Built on Sun_Mar_21_19:15:46_PDT_2021<br>
Cuda compilation tools, release 11.3, V11.3.58<br>
Build cuda_11.3.r11.3/compiler.29745058_0<br>
# 解压
tar -zxvf cudnn-11.3-linux-x64-v8.2.0.53.tgz
将cudnn的头文件和lib拷贝到cuda11.3的安装目录下:
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
本教程中,tensorrt只需要下载\、解压即可,不需要安装。
# 解压
tar -zxvf TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz
# 快速验证一下tensorrt+cuda+cudnn是否安装正常
cd TensorRT-8.4.2.4/samples/sampleMNIST
make
cd ../../bin/
导出tensorrt环境变量(it is important!),注:将LD_LIBRARY_PATH:后面的路径换成你自己的!后续编译onnx模型的时候也需要执行下面第一行命令
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/xxx/temp/TensorRT-8.4.2.4/lib
./sample_mnist
bash窗口打印类似如下图的手写数字识别表明cuda+cudnn+tensorrt安装正常
git clone https://github.com/FeiYull/tensorrt-alpha
设置您自己TensorRT根目录:
git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/cmake
vim common.cmake
# 在文件common.cmake中的第20行中,设置成你自己的目录,别和我设置一样的路径eg:
# set(TensorRT_ROOT /root/TensorRT-8.4.2.4)
可以直接从网盘下载onnx文件[weiyun]:weiyun or google driver ,你也可以自己下载仓库,然后按照下面指令手动导出onnx文件:
# 下载yolov5源码
git clone https://github.com/ultralytics/yolov5
切换版本为yolov5.7.0
git checkout v7.0
安装 yolov5环境
pip install -r requirements.txt
用以下指令导出onnx模型文件,640表示模型的输入分辨率为:640X640,1280同理表示:1280X1280。建议使用640对应的小模型。
# 640
python export.py --weights=yolov5n.pt --dynamic --include=onnx
python export.py --weights=yolov5s.pt --dynamic --include=onnx
python export.py --weights=yolov5m.pt --dynamic --include=onnx
python export.py --weights=yolov5l.pt --dynamic --include=onnx
python export.py --weights=yolov5x.pt --dynamic --include=onnx
# 1280
python export.py --weights=yolov5n6.pt --dynamic --include=onnx
python export.py --weights=yolov5s6.pt --dynamic --include=onnx
python export.py --weights=yolov5m6.pt --dynamic --include=onnx
python export.py --weights=yolov5l6.pt --dynamic --include=onnx
python export.py --weights=yolov5x6.pt --dynamic --include=onnx
将你的onnx模型放到这个路径:tensorrt-alpha/data/yolov5
cd tensorrt-alpha/data/yolov5
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/TensorRT-8.4.2.4/lib
编译onnx模型指令,640表示模型的输入分辨率为:640X640,1280同理表示:1280X1280。注意:编译onnx格式的模型会得到例如xxxx.trt格式的文件,下文推理要用到。
# 640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov5n.onnx --saveEngine=yolov5n.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov5s.onnx --saveEngine=yolov5s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov5m.onnx --saveEngine=yolov5m.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov5l.onnx --saveEngine=yolov5l.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov5x.onnx --saveEngine=yolov5x.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
# 1280
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov5n6.onnx --saveEngine=yolov5n6.trt --buildOnly --minShapes=images:1x3x1280x1280 --optShapes=images:4x3x1280x1280 --maxShapes=images:8x3x1280x1280
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov5s6.onnx --saveEngine=yolov5s6.trt --buildOnly --minShapes=images:1x3x1280x1280 --optShapes=images:4x3x1280x1280 --maxShapes=images:8x3x1280x1280
使用命令行编译下代码
git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/yolov5
mkdir build
cd build
cmake ..
make -j10
按照需求执行推理,支持推理一张图片、在线推理视频文件,或者在线从摄像头获取视频流并推理。
# 640
# infer an image
./app_yolov5 --version=v570 --model=../../data/yolov5/yolov5n.trt --size=640 --batch_size=1 --img=../../data/6406401.jpg --show --savePath=../
# infer video
./app_yolov5 --version=v570 --model=../../data/yolov5/yolov5n.trt --size=640 --batch_size=8 --video=../../data/people.mp4 --show
# infer web camera
./app_yolov5 --version=v570 --model=../../data/yolov5/yolov5n.trt --size=640 --batch_size=2 --show --cam_id=0
# 1280
./app_yolov5 --version=v570 --model=../../data/yolov5/yolov5s6.trt --size=1280 --batch_size=1 --img=../../data/6406401.jpg --show --savePath
例如:以下是yolov5推理视频流效果。
都看到这里了,觉得可以请点赞收藏,有条件的去仓库点个star,仓库:https://github.com/FeiYull/tensorrt-alpha