仿modou库one thread one loop式并发服务器

前述:这篇文章讲的不是很详细,只贴上了大概的实现思想和部分实现源码。后续会逐渐更新。
源码:https://gitee.com/songbijian/modou-tcpserver

目录

SERVER模块:

管理⽅⾯:

Buffer模块:

Socket模块:

Channel模块:

Connection模块:

Acceptor模块:

TimerQueue模块:

Poller模块:

EventLoop模块:

TcpServer模块:

HTTP协议组件模块:

Util模块:

HttpRequest模块:

HttpContext模块:

HttpServer模块:


通过咱们实现的⾼并发服务器组件,可以简洁快速的完成⼀个⾼性能的服务器搭建。
并且,通过组件内提供的不同应⽤层协议⽀持,也可以快速完成⼀个⾼性能应⽤服务器的搭建(当前 ,为了便于项⽬的演⽰,项⽬中提供HTTP协议组件的⽀持)。 在这⾥,要明确的是咱们要实现的是⼀个⾼并发服务器组件,因此当前的项⽬中并不包含实际的业务内容。
仿modou库one thread one loop式并发服务器_第1张图片
图片来源: 图解one loop per thread:使用muduo网络库实现web服务器_znzxc的博客-CSDN博客
本项目总共分为两大模块分别为Server和HTTP模块。

SERVER模块:

SERVER模块就是对所有的连接以及线程进⾏管理,让它们各司其职,在合适的时候做合适的事,最终完成⾼性能服务器组件的实现。

管理⽅⾯:

监听连接管理:对监听连接进⾏管理
通信连接管理:对通信连接进⾏管理
超时连接管理:对超时连接进⾏管理
基于以上可以将其分为多个子模块:

Buffer模块:

⽤于实现⽤⼾态缓冲区,提供数据缓冲,取出等功能。
class Buffer {
    private:
        std::vector _buffer; //使用vector进行内存空间管理
        uint64_t _reader_idx; //读偏移
        uint64_t _writer_idx; //写偏移
    public:
        Buffer():_reader_idx(0), _writer_idx(0), _buffer(BUFFER_DEFAULT_SIZE){}
        char *Begin() { return &*_buffer.begin(); }
        //获取当前写入起始地址, _buffer的空间起始地址,加上写偏移量
        char *WritePosition() { return Begin() + _writer_idx; }
        //获取当前读取起始地址
        char *ReadPosition() { return Begin() + _reader_idx; }
        //获取缓冲区末尾空闲空间大小--写偏移之后的空闲空间, 总体空间大小减去写偏移
        uint64_t TailIdleSize() { return _buffer.size() - _writer_idx; }
        //获取缓冲区起始空闲空间大小--读偏移之前的空闲空间
        uint64_t HeadIdleSize() { return _reader_idx; }
        //获取可读数据大小 = 写偏移 - 读偏移
        uint64_t ReadAbleSize() { return _writer_idx - _reader_idx; }
        //将读偏移向后移动
        void MoveReadOffset(uint64_t len) { 
            if (len == 0) return; 
            //向后移动的大小,必须小于可读数据大小
            assert(len <= ReadAbleSize());
            _reader_idx += len;
        }
        //将写偏移向后移动 
        void MoveWriteOffset(uint64_t len) {
            //向后移动的大小,必须小于当前后边的空闲空间大小
            assert(len <= TailIdleSize());
            _writer_idx += len;
        }
        //确保可写空间足够(整体空闲空间够了就移动数据,否则就扩容)
        void EnsureWriteSpace(uint64_t len) {
            //如果末尾空闲空间大小足够,直接返回
            if (TailIdleSize() >= len) { return; }
            //末尾空闲空间不够,则判断加上起始位置的空闲空间大小是否足够, 够了就将数据移动到起始位置
            if (len <= TailIdleSize() + HeadIdleSize()) {
                //将数据移动到起始位置
                uint64_t rsz = ReadAbleSize();//把当前数据大小先保存起来
                std::copy(ReadPosition(), ReadPosition() + rsz, Begin());//把可读数据拷贝到起始位置
                _reader_idx = 0;    //将读偏移归0
                _writer_idx = rsz;  //将写位置置为可读数据大小, 因为当前的可读数据大小就是写偏移量
            }else {
                //总体空间不够,则需要扩容,不移动数据,直接给写偏移之后扩容足够空间即可
                DBG_LOG("RESIZE %ld", _writer_idx + len);
                _buffer.resize(_writer_idx + len);
            }
        } 
        //写入数据
        void Write(const void *data, uint64_t len) {
            //1. 保证有足够空间,2. 拷贝数据进去
            if (len == 0) return;
            EnsureWriteSpace(len);
            const char *d = (const char *)data;
            std::copy(d, d + len, WritePosition());
        }
        void WriteAndPush(const void *data, uint64_t len) {
            Write(data, len);
            MoveWriteOffset(len);
        }
        void WriteString(const std::string &data) {
            return Write(data.c_str(), data.size());
        }
        void WriteStringAndPush(const std::string &data) {
            WriteString(data);
            MoveWriteOffset(data.size());
        }
        void WriteBuffer(Buffer &data) {
            return Write(data.ReadPosition(), data.ReadAbleSize());
        }
        void WriteBufferAndPush(Buffer &data) { 
            WriteBuffer(data);
            MoveWriteOffset(data.ReadAbleSize());
        }
        //读取数据
        void Read(void *buf, uint64_t len) {
            //要求要获取的数据大小必须小于可读数据大小
            assert(len <= ReadAbleSize());
            std::copy(ReadPosition(), ReadPosition() + len, (char*)buf);
        }
        void ReadAndPop(void *buf, uint64_t len) {
            Read(buf, len);
            MoveReadOffset(len);
        }
        std::string ReadAsString(uint64_t len) {
            //要求要获取的数据大小必须小于可读数据大小
            assert(len <= ReadAbleSize());
            std::string str;
            str.resize(len);
            Read(&str[0], len);
            return str;
        }
        std::string ReadAsStringAndPop(uint64_t len) {
            assert(len <= ReadAbleSize());
            std::string str = ReadAsString(len);
            MoveReadOffset(len);
            return str;
        }
        char *FindCRLF() {
            char *res = (char*)memchr(ReadPosition(), '\n', ReadAbleSize());
            return res;
        }
        /*通常获取一行数据,这种情况针对是*/
        std::string GetLine() {
            char *pos = FindCRLF();
            if (pos == NULL) {
                return "";
            }
            // +1是为了把换行字符也取出来。
            return ReadAsString(pos - ReadPosition() + 1);
        }
        std::string GetLineAndPop() {
            std::string str = GetLine();
            MoveReadOffset(str.size());
            return str;
        }
        //清空缓冲区
        void Clear() {
            //只需要将偏移量归0即可
            _reader_idx = 0;
            _writer_idx = 0;
        }
};

Socket模块:

封装套接字
class Socket {
    private:
        int _sockfd;
    public:
        Socket():_sockfd(-1) {}
        Socket(int fd): _sockfd(fd) {}
        ~Socket() { Close(); }
        int Fd() { return _sockfd; }
        //创建套接字
        bool Create() {
            // int socket(int domain, int type, int protocol)
            _sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
            if (_sockfd < 0) {
                ERR_LOG("CREATE SOCKET FAILED!!");
                return false;
            }
            return true;
        }
        //绑定地址信息
        bool Bind(const std::string &ip, uint16_t port) {
            struct sockaddr_in addr;
            addr.sin_family = AF_INET;
            addr.sin_port = htons(port);
            addr.sin_addr.s_addr = inet_addr(ip.c_str());
            socklen_t len = sizeof(struct sockaddr_in);
            // int bind(int sockfd, struct sockaddr*addr, socklen_t len);
            int ret = bind(_sockfd, (struct sockaddr*)&addr, len);
            if (ret < 0) {
                ERR_LOG("BIND ADDRESS FAILED!");
                return false;
            }
            return true;
        }
        //开始监听
        bool Listen(int backlog = MAX_LISTEN) {
            // int listen(int backlog)
            int ret = listen(_sockfd, backlog);
            if (ret < 0) {
                ERR_LOG("SOCKET LISTEN FAILED!");
                return false;
            }
            return true;
        }
        //向服务器发起连接
        bool Connect(const std::string &ip, uint16_t port) {
            struct sockaddr_in addr;
            addr.sin_family = AF_INET;
            addr.sin_port = htons(port);
            addr.sin_addr.s_addr = inet_addr(ip.c_str());
            socklen_t len = sizeof(struct sockaddr_in);
            // int connect(int sockfd, struct sockaddr*addr, socklen_t len);
            int ret = connect(_sockfd, (struct sockaddr*)&addr, len);
            if (ret < 0) {
                ERR_LOG("CONNECT SERVER FAILED!");
                return false;
            }
            return true;
        }
        //获取新连接
        int Accept() {
            // int accept(int sockfd, struct sockaddr *addr, socklen_t *len);
            int newfd = accept(_sockfd, NULL, NULL);
            if (newfd < 0) {
                ERR_LOG("SOCKET ACCEPT FAILED!");
                return -1;
            }
            return newfd;
        }
        //接收数据
        ssize_t Recv(void *buf, size_t len, int flag = 0) {
            // ssize_t recv(int sockfd, void *buf, size_t len, int flag);
            ssize_t ret = recv(_sockfd, buf, len, flag);
            if (ret <= 0) {
                //EAGAIN 当前socket的接收缓冲区中没有数据了,在非阻塞的情况下才会有这个错误
                //EINTR  表示当前socket的阻塞等待,被信号打断了,
                if (errno == EAGAIN || errno == EINTR) {
                    return 0;//表示这次接收没有接收到数据
                }
                ERR_LOG("SOCKET RECV FAILED!!");
                return -1;
            }
            return ret; //实际接收的数据长度
        }
        ssize_t NonBlockRecv(void *buf, size_t len) {
            return Recv(buf, len, MSG_DONTWAIT); // MSG_DONTWAIT 表示当前接收为非阻塞。
        }
        //发送数据
        ssize_t Send(const void *buf, size_t len, int flag = 0) {
            // ssize_t send(int sockfd, void *data, size_t len, int flag);
            ssize_t ret = send(_sockfd, buf, len, flag);
            if (ret < 0) {
                if (errno == EAGAIN || errno == EINTR) {
                    return 0;
                }
                ERR_LOG("SOCKET SEND FAILED!!");
                return -1;
            }
            return ret;//实际发送的数据长度
        }
        ssize_t NonBlockSend(void *buf, size_t len) {
            if (len == 0) return 0;
            return Send(buf, len, MSG_DONTWAIT); // MSG_DONTWAIT 表示当前发送为非阻塞。
        }
        //关闭套接字
        void Close() {
            if (_sockfd != -1) {
                close(_sockfd);
                _sockfd = -1;
            }
        }
        //创建一个服务端连接
        bool CreateServer(uint16_t port, const std::string &ip = "0.0.0.0", bool block_flag = false) {
            //1. 创建套接字,2. 绑定地址,3. 开始监听,4. 设置非阻塞, 5. 启动地址重用
            if (Create() == false) return false;
            if (block_flag) NonBlock();
            if (Bind(ip, port) == false) return false;
            if (Listen() == false) return false;
            ReuseAddress();
            return true;
        }
        //创建一个客户端连接
        bool CreateClient(uint16_t port, const std::string &ip) {
            //1. 创建套接字,2.指向连接服务器
            if (Create() == false) return false;
            if (Connect(ip, port) == false) return false;
            return true;
        }
        //设置套接字选项---开启地址端口重用
        void ReuseAddress() {
            // int setsockopt(int fd, int leve, int optname, void *val, int vallen)
            int val = 1;
            setsockopt(_sockfd, SOL_SOCKET, SO_REUSEADDR, (void*)&val, sizeof(int));
            val = 1;
            setsockopt(_sockfd, SOL_SOCKET, SO_REUSEPORT, (void*)&val, sizeof(int));
        }
        //设置套接字阻塞属性-- 设置为非阻塞
        void NonBlock() {
            //int fcntl(int fd, int cmd, ... /* arg */ );
            int flag = fcntl(_sockfd, F_GETFL, 0);
            fcntl(_sockfd, F_SETFL, flag | O_NONBLOCK);
        }
};

Channel模块:

Channel模块是对⼀个描述符需要进⾏的IO事件管理的模块,实现对描述符可读,可写,错误...事件的管理操作,以及Poller模块对描述符进⾏IO事件监控就绪后,根据不同的事件,回调不同的处理函数功能。
class Channel {
    private:
        int _fd;
        EventLoop *_loop;
        uint32_t _events;  // 当前需要监控的事件
        uint32_t _revents; // 当前连接触发的事件
        using EventCallback = std::function;
        EventCallback _read_callback;   //可读事件被触发的回调函数
        EventCallback _write_callback;  //可写事件被触发的回调函数
        EventCallback _error_callback;  //错误事件被触发的回调函数
        EventCallback _close_callback;  //连接断开事件被触发的回调函数
        EventCallback _event_callback;  //任意事件被触发的回调函数
    public:
        Channel(EventLoop *loop, int fd):_fd(fd), _events(0), _revents(0), _loop(loop) {}
        int Fd() { return _fd; }
        uint32_t Events() { return _events; }//获取想要监控的事件
        void SetREvents(uint32_t events) { _revents = events; }//设置实际就绪的事件
        void SetReadCallback(const EventCallback &cb) { _read_callback = cb; }
        void SetWriteCallback(const EventCallback &cb) { _write_callback = cb; }
        void SetErrorCallback(const EventCallback &cb) { _error_callback = cb; }
        void SetCloseCallback(const EventCallback &cb) { _close_callback = cb; }
        void SetEventCallback(const EventCallback &cb) { _event_callback = cb; }
        //当前是否监控了可读
        bool ReadAble() { return (_events & EPOLLIN); } 
        //当前是否监控了可写
        bool WriteAble() { return (_events & EPOLLOUT); }
        //启动读事件监控
        void EnableRead() { _events |= EPOLLIN; Update(); }
        //启动写事件监控
        void EnableWrite() { _events |= EPOLLOUT; Update(); }
        //关闭读事件监控
        void DisableRead() { _events &= ~EPOLLIN; Update(); }
        //关闭写事件监控
        void DisableWrite() { _events &= ~EPOLLOUT; Update(); }
        //关闭所有事件监控
        void DisableAll() { _events = 0; Update(); }
        //移除监控
        void Remove();
        void Update();
        //事件处理,一旦连接触发了事件,就调用这个函数,自己触发了什么事件如何处理自己决定
        void HandleEvent() {
            if ((_revents & EPOLLIN) || (_revents & EPOLLRDHUP) || (_revents & EPOLLPRI)) {
                /*不管任何事件,都调用的回调函数*/
                if (_read_callback) _read_callback();
            }
            /*有可能会释放连接的操作事件,一次只处理一个*/
            if (_revents & EPOLLOUT) {
                if (_write_callback) _write_callback();
            }else if (_revents & EPOLLERR) {
                if (_error_callback) _error_callback();//一旦出错,就会释放连接,因此要放到前边调用任意回调
            }else if (_revents & EPOLLHUP) {
                if (_close_callback) _close_callback();
            }
            if (_event_callback) _event_callback();
        }
};

Connection模块:

Connection模块是对Buffer模块,Socket模块,Channel模块的⼀个整体封装,实现了对⼀个通信套接字的整体的管理,每⼀个进⾏数据通信的套接字(也就是accept获取到的新连接)都会使⽤ Connection进⾏管理。
class Connection : public std::enable_shared_from_this {
    private:
        uint64_t _conn_id;  // 连接的唯一ID,便于连接的管理和查找
        //uint64_t _timer_id;   //定时器ID,必须是唯一的,这块为了简化操作使用conn_id作为定时器ID
        int _sockfd;        // 连接关联的文件描述符
        bool _enable_inactive_release;  // 连接是否启动非活跃销毁的判断标志,默认为false
        EventLoop *_loop;   // 连接所关联的一个EventLoop
        ConnStatu _statu;   // 连接状态
        Socket _socket;     // 套接字操作管理
        Channel _channel;   // 连接的事件管理
        Buffer _in_buffer;  // 输入缓冲区---存放从socket中读取到的数据
        Buffer _out_buffer; // 输出缓冲区---存放要发送给对端的数据
        Any _context;       // 请求的接收处理上下文

        /*这四个回调函数,是让服务器模块来设置的(其实服务器模块的处理回调也是组件使用者设置的)*/
        /*换句话说,这几个回调都是组件使用者使用的*/
        using ConnectedCallback = std::function;
        using MessageCallback = std::function;
        using ClosedCallback = std::function;
        using AnyEventCallback = std::function;
        ConnectedCallback _connected_callback;
        MessageCallback _message_callback;
        ClosedCallback _closed_callback;
        AnyEventCallback _event_callback;
        /*组件内的连接关闭回调--组件内设置的,因为服务器组件内会把所有的连接管理起来,一旦某个连接要关闭*/
        /*就应该从管理的地方移除掉自己的信息*/
        ClosedCallback _server_closed_callback;
    private:
        /*五个channel的事件回调函数*/
        //描述符可读事件触发后调用的函数,接收socket数据放到接收缓冲区中,然后调用_message_callback
        void HandleRead() {
            //1. 接收socket的数据,放到缓冲区
            char buf[65536];
            ssize_t ret = _socket.NonBlockRecv(buf, 65535);
            if (ret < 0) {
                //出错了,不能直接关闭连接
                return ShutdownInLoop();
            }
            //这里的等于0表示的是没有读取到数据,而并不是连接断开了,连接断开返回的是-1
            //将数据放入输入缓冲区,写入之后顺便将写偏移向后移动
            _in_buffer.WriteAndPush(buf, ret);
            //2. 调用message_callback进行业务处理
            if (_in_buffer.ReadAbleSize() > 0) {
                //shared_from_this--从当前对象自身获取自身的shared_ptr管理对象
                return _message_callback(shared_from_this(), &_in_buffer);
            }
        }
        //描述符可写事件触发后调用的函数,将发送缓冲区中的数据进行发送
        void HandleWrite() {
            //_out_buffer中保存的数据就是要发送的数据
            ssize_t ret = _socket.NonBlockSend(_out_buffer.ReadPosition(), _out_buffer.ReadAbleSize());
            if (ret < 0) {
                //发送错误就该关闭连接了,
                if (_in_buffer.ReadAbleSize() > 0) {
                    _message_callback(shared_from_this(), &_in_buffer);
                }
                return Release();//这时候就是实际的关闭释放操作了。
            }
            _out_buffer.MoveReadOffset(ret);//千万不要忘了,将读偏移向后移动
            if (_out_buffer.ReadAbleSize() == 0) {
                _channel.DisableWrite();// 没有数据待发送了,关闭写事件监控
                //如果当前是连接待关闭状态,则有数据,发送完数据释放连接,没有数据则直接释放
                if (_statu == DISCONNECTING) {
                    return Release();
                }
            }
            return;
        }
        //描述符触发挂断事件
        void HandleClose() {
            /*一旦连接挂断了,套接字就什么都干不了了,因此有数据待处理就处理一下,完毕关闭连接*/
            if (_in_buffer.ReadAbleSize() > 0) {
                _message_callback(shared_from_this(), &_in_buffer);
            }
            return Release();
        }
        //描述符触发出错事件
        void HandleError() {
            return HandleClose();
        }
        //描述符触发任意事件: 1. 刷新连接的活跃度--延迟定时销毁任务;  2. 调用组件使用者的任意事件回调
        void HandleEvent() {
            if (_enable_inactive_release == true)  {  _loop->TimerRefresh(_conn_id); }
            if (_event_callback)  {  _event_callback(shared_from_this()); }
        }
        //连接获取之后,所处的状态下要进行各种设置(启动读监控,调用回调函数)
        void EstablishedInLoop() {
            // 1. 修改连接状态;  2. 启动读事件监控;  3. 调用回调函数
            assert(_statu == CONNECTING);//当前的状态必须一定是上层的半连接状态
            _statu = CONNECTED;//当前函数执行完毕,则连接进入已完成连接状态
            // 一旦启动读事件监控就有可能会立即触发读事件,如果这时候启动了非活跃连接销毁
            _channel.EnableRead();
            if (_connected_callback) _connected_callback(shared_from_this());
        }
        //这个接口才是实际的释放接口
        void ReleaseInLoop() {
            //1. 修改连接状态,将其置为DISCONNECTED
            _statu = DISCONNECTED;
            //2. 移除连接的事件监控
            _channel.Remove();
            //3. 关闭描述符
            _socket.Close();
            //4. 如果当前定时器队列中还有定时销毁任务,则取消任务
            if (_loop->HasTimer(_conn_id)) CancelInactiveReleaseInLoop();
            //5. 调用关闭回调函数,避免先移除服务器管理的连接信息导致Connection被释放,再去处理会出错,因此先调用用户的回调函数
            if (_closed_callback) _closed_callback(shared_from_this());
            //移除服务器内部管理的连接信息
            if (_server_closed_callback) _server_closed_callback(shared_from_this());
        }
        //这个接口并不是实际的发送接口,而只是把数据放到了发送缓冲区,启动了可写事件监控
        void SendInLoop(Buffer &buf) {
            if (_statu == DISCONNECTED) return ;
            _out_buffer.WriteBufferAndPush(buf);
            if (_channel.WriteAble() == false) {
                _channel.EnableWrite();
            }
        }
        //这个关闭操作并非实际的连接释放操作,需要判断还有没有数据待处理,待发送
        void ShutdownInLoop() {
            _statu = DISCONNECTING;// 设置连接为半关闭状态
            if (_in_buffer.ReadAbleSize() > 0) {
                if (_message_callback) _message_callback(shared_from_this(), &_in_buffer);
            }
            //要么就是写入数据的时候出错关闭,要么就是没有待发送数据,直接关闭
            if (_out_buffer.ReadAbleSize() > 0) {
                if (_channel.WriteAble() == false) {
                    _channel.EnableWrite();
                }
            }
            if (_out_buffer.ReadAbleSize() == 0) {
                Release();
            }
        }
        //启动非活跃连接超时释放规则
        void EnableInactiveReleaseInLoop(int sec) {
            //1. 将判断标志 _enable_inactive_release 置为true
            _enable_inactive_release = true;
            //2. 如果当前定时销毁任务已经存在,那就刷新延迟一下即可
            if (_loop->HasTimer(_conn_id)) {
                return _loop->TimerRefresh(_conn_id);
            }
            //3. 如果不存在定时销毁任务,则新增
            _loop->TimerAdd(_conn_id, sec, std::bind(&Connection::Release, this));
        }
        void CancelInactiveReleaseInLoop() {
            _enable_inactive_release = false;
            if (_loop->HasTimer(_conn_id)) { 
                _loop->TimerCancel(_conn_id); 
            }
        }
        void UpgradeInLoop(const Any &context, 
                    const ConnectedCallback &conn, 
                    const MessageCallback &msg, 
                    const ClosedCallback &closed, 
                    const AnyEventCallback &event) {
            _context = context;
            _connected_callback = conn;
            _message_callback = msg;
            _closed_callback = closed;
            _event_callback = event;
        }
    public:
        Connection(EventLoop *loop, uint64_t conn_id, int sockfd):_conn_id(conn_id), _sockfd(sockfd),
            _enable_inactive_release(false), _loop(loop), _statu(CONNECTING), _socket(_sockfd),
            _channel(loop, _sockfd) {
            _channel.SetCloseCallback(std::bind(&Connection::HandleClose, this));
            _channel.SetEventCallback(std::bind(&Connection::HandleEvent, this));
            _channel.SetReadCallback(std::bind(&Connection::HandleRead, this));
            _channel.SetWriteCallback(std::bind(&Connection::HandleWrite, this));
            _channel.SetErrorCallback(std::bind(&Connection::HandleError, this));
        }
        ~Connection() { DBG_LOG("RELEASE CONNECTION:%p", this); }
        //获取管理的文件描述符
        int Fd() { return _sockfd; }
        //获取连接ID
        int Id() { return _conn_id; }
        //是否处于CONNECTED状态
        bool Connected() { return (_statu == CONNECTED); }
        //设置上下文--连接建立完成时进行调用
        void SetContext(const Any &context) { _context = context; }
        //获取上下文,返回的是指针
        Any *GetContext() { return &_context; }
        void SetConnectedCallback(const ConnectedCallback&cb) { _connected_callback = cb; }
        void SetMessageCallback(const MessageCallback&cb) { _message_callback = cb; }
        void SetClosedCallback(const ClosedCallback&cb) { _closed_callback = cb; }
        void SetAnyEventCallback(const AnyEventCallback&cb) { _event_callback = cb; }
        void SetSrvClosedCallback(const ClosedCallback&cb) { _server_closed_callback = cb; }
        //连接建立就绪后,进行channel回调设置,启动读监控,调用_connected_callback
        void Established() {
            _loop->RunInLoop(std::bind(&Connection::EstablishedInLoop, this));
        }
        //发送数据,将数据放到发送缓冲区,启动写事件监控
        void Send(const char *data, size_t len) {
            //外界传入的data,可能是个临时的空间,我们现在只是把发送操作压入了任务池,有可能并没有被立即执行
            //因此有可能执行的时候,data指向的空间有可能已经被释放了。
            Buffer buf;
            buf.WriteAndPush(data, len);
            _loop->RunInLoop(std::bind(&Connection::SendInLoop, this, std::move(buf)));
        }
        //提供给组件使用者的关闭接口--并不实际关闭,需要判断有没有数据待处理
        void Shutdown() {
            _loop->RunInLoop(std::bind(&Connection::ShutdownInLoop, this));
        }
        void Release() {
            _loop->QueueInLoop(std::bind(&Connection::ReleaseInLoop, this));
        }
        //启动非活跃销毁,并定义多长时间无通信就是非活跃,添加定时任务
        void EnableInactiveRelease(int sec) {
            _loop->RunInLoop(std::bind(&Connection::EnableInactiveReleaseInLoop, this, sec));
        }
        //取消非活跃销毁
        void CancelInactiveRelease() {
            _loop->RunInLoop(std::bind(&Connection::CancelInactiveReleaseInLoop, this));
        }
        //切换协议---重置上下文以及阶段性回调处理函数 -- 而是这个接口必须在EventLoop线程中立即执行
        //防备新的事件触发后,处理的时候,切换任务还没有被执行--会导致数据使用原协议处理了。
        void Upgrade(const Any &context, const ConnectedCallback &conn, const MessageCallback &msg, 
                     const ClosedCallback &closed, const AnyEventCallback &event) {
            _loop->AssertInLoop();
            _loop->RunInLoop(std::bind(&Connection::UpgradeInLoop, this, context, conn, msg, closed, event));
        }
};

Acceptor模块:

Acceptor模块是对Socket模块,Channel模块的⼀个整体封装,实现了对⼀个监听套接字的整体的管理。
class Acceptor {
    private:
        Socket _socket;//用于创建监听套接字
        EventLoop *_loop; //用于对监听套接字进行事件监控
        Channel _channel; //用于对监听套接字进行事件管理

        using AcceptCallback = std::function;
        AcceptCallback _accept_callback;
    private:
        /*监听套接字的读事件回调处理函数---获取新连接,调用_accept_callback函数进行新连接处理*/
        void HandleRead() {
            int newfd = _socket.Accept();
            if (newfd < 0) {
                return ;
            }
            if (_accept_callback) _accept_callback(newfd);
        }
        int CreateServer(int port) {
            bool ret = _socket.CreateServer(port);
            assert(ret == true);
            return _socket.Fd();
        }
    public:
        /*不能将启动读事件监控,放到构造函数中,必须在设置回调函数后,再去启动*/
        /*否则有可能造成启动监控后,立即有事件,处理的时候,回调函数还没设置:新连接得不到处理,且资源泄漏*/
        Acceptor(EventLoop *loop, int port): _socket(CreateServer(port)), _loop(loop), 
            _channel(loop, _socket.Fd()) {
            _channel.SetReadCallback(std::bind(&Acceptor::HandleRead, this));
        }
        void SetAcceptCallback(const AcceptCallback &cb) { _accept_callback = cb; }
        void Listen() { _channel.EnableRead(); }
};

TimerQueue模块:

TimerQueue模块是实现固定时间定时任务的模块,可以理解就是要给定时任务管理器,向定时任务管理器中添加⼀个任务,任务将在固定时间后被执⾏,同时也可以通过刷新定时任务来延迟任务的执⾏。
using TaskFunc = std::function;
using ReleaseFunc = std::function;
class TimerTask{
    private:
        uint64_t _id;       // 定时器任务对象ID
        uint32_t _timeout;  //定时任务的超时时间
        bool _canceled;     // false-表示没有被取消, true-表示被取消
        TaskFunc _task_cb;  //定时器对象要执行的定时任务
        ReleaseFunc _release; //用于删除TimerWheel中保存的定时器对象信息
    public:
        TimerTask(uint64_t id, uint32_t delay, const TaskFunc &cb): 
            _id(id), _timeout(delay), _task_cb(cb), _canceled(false) {}
        ~TimerTask() { 
            if (_canceled == false) _task_cb(); 
            _release(); 
        }
        void Cancel() { _canceled = true; }
        void SetRelease(const ReleaseFunc &cb) { _release = cb; }
        uint32_t DelayTime() { return _timeout; }
};

class TimerWheel {
    private:
        using WeakTask = std::weak_ptr;
        using PtrTask = std::shared_ptr;
        int _tick;      //当前的秒针,走到哪里释放哪里,释放哪里,就相当于执行哪里的任务
        int _capacity;  //表盘最大数量---其实就是最大延迟时间
        std::vector> _wheel;
        std::unordered_map _timers;

        EventLoop *_loop;
        int _timerfd;//定时器描述符--可读事件回调就是读取计数器,执行定时任务
        std::unique_ptr _timer_channel;
    private:
        void RemoveTimer(uint64_t id) {
            auto it = _timers.find(id);
            if (it != _timers.end()) {
                _timers.erase(it);
            }
        }
        static int CreateTimerfd() {
            int timerfd = timerfd_create(CLOCK_MONOTONIC, 0);
            if (timerfd < 0) {
                ERR_LOG("TIMERFD CREATE FAILED!");
                abort();
            }
            //int timerfd_settime(int fd, int flags, struct itimerspec *new, struct itimerspec *old);
            struct itimerspec itime;
            itime.it_value.tv_sec = 1;
            itime.it_value.tv_nsec = 0;//第一次超时时间为1s后
            itime.it_interval.tv_sec = 1; 
            itime.it_interval.tv_nsec = 0; //第一次超时后,每次超时的间隔时
            timerfd_settime(timerfd, 0, &itime, NULL);
            return timerfd;
        }
        int ReadTimefd() {
            uint64_t times;
            //有可能因为其他描述符的事件处理花费事件比较长,然后在处理定时器描述符事件的时候,有可能就已经超时了很多次
            //read读取到的数据times就是从上一次read之后超时的次数
            int ret = read(_timerfd, ×, 8);
            if (ret < 0) {
                ERR_LOG("READ TIMEFD FAILED!");
                abort();
            }
            return times;
        }
        //这个函数应该每秒钟被执行一次,相当于秒针向后走了一步
        void RunTimerTask() {
            _tick = (_tick + 1) % _capacity;
            _wheel[_tick].clear();//清空指定位置的数组,就会把数组中保存的所有管理定时器对象的shared_ptr释放掉
        }
        void OnTime() {
            //根据实际超时的次数,执行对应的超时任务
            int times = ReadTimefd();
            for (int i = 0; i < times; i++) {
                RunTimerTask();
            }
        }
        void TimerAddInLoop(uint64_t id, uint32_t delay, const TaskFunc &cb) {
            PtrTask pt(new TimerTask(id, delay, cb));
            pt->SetRelease(std::bind(&TimerWheel::RemoveTimer, this, id));
            int pos = (_tick + delay) % _capacity;
            _wheel[pos].push_back(pt);
            _timers[id] = WeakTask(pt);
        }
        void TimerRefreshInLoop(uint64_t id) {
            //通过保存的定时器对象的weak_ptr构造一个shared_ptr出来,添加到轮子中
            auto it = _timers.find(id);
            if (it == _timers.end()) {
                return;//没找着定时任务,没法刷新,没法延迟
            }
            PtrTask pt = it->second.lock();//lock获取weak_ptr管理的对象对应的shared_ptr
            int delay = pt->DelayTime();
            int pos = (_tick + delay) % _capacity;
            _wheel[pos].push_back(pt);
        }
        void TimerCancelInLoop(uint64_t id) {
            auto it = _timers.find(id);
            if (it == _timers.end()) {
                return;//没找着定时任务,没法刷新,没法延迟
            }
            PtrTask pt = it->second.lock();
            if (pt) pt->Cancel();
        }
    public:
        TimerWheel(EventLoop *loop):_capacity(60), _tick(0), _wheel(_capacity), _loop(loop), 
            _timerfd(CreateTimerfd()), _timer_channel(new Channel(_loop, _timerfd)) {
            _timer_channel->SetReadCallback(std::bind(&TimerWheel::OnTime, this));
            _timer_channel->EnableRead();//启动读事件监控
        }
        /*定时器中有个_timers成员,定时器信息的操作有可能在多线程中进行,因此需要考虑线程安全问题*/
        /*如果不想加锁,那就把对定期的所有操作,都放到一个线程中进行*/
        void TimerAdd(uint64_t id, uint32_t delay, const TaskFunc &cb);
        //刷新/延迟定时任务
        void TimerRefresh(uint64_t id);
        void TimerCancel(uint64_t id);
        /*这个接口存在线程安全问题--这个接口实际上不能被外界使用者调用,只能在模块内,在对应的EventLoop线程内执行*/
        bool HasTimer(uint64_t id) {
            auto it = _timers.find(id);
            if (it == _timers.end()) {
                return false;
            }
            return true;
        }
};

Poller模块:

Poller模块是对epoll进⾏封装的⼀个模块,主要实现epoll的IO事件添加,修改,移除,获取活跃连接功能。
class Poller {
    private:
        int _epfd;
        struct epoll_event _evs[MAX_EPOLLEVENTS];
        std::unordered_map _channels;
    private:
        //对epoll的直接操作
        void Update(Channel *channel, int op) {
            // int epoll_ctl(int epfd, int op,  int fd,  struct epoll_event *ev);
            int fd = channel->Fd();
            struct epoll_event ev;
            ev.data.fd = fd;
            ev.events = channel->Events();
            int ret = epoll_ctl(_epfd, op, fd, &ev);
            if (ret < 0) {
                ERR_LOG("EPOLLCTL FAILED!");
            }
            return;
        }
        //判断一个Channel是否已经添加了事件监控
        bool HasChannel(Channel *channel) {
            auto it = _channels.find(channel->Fd());
            if (it == _channels.end()) {
                return false;
            }
            return true;
        }
    public:
        Poller() {
            _epfd = epoll_create(MAX_EPOLLEVENTS);
            if (_epfd < 0) {
                ERR_LOG("EPOLL CREATE FAILED!!");
                abort();//退出程序
            }
        }
        //添加或修改监控事件
        void UpdateEvent(Channel *channel) {
            bool ret = HasChannel(channel);
            if (ret == false) {
                //不存在则添加
                _channels.insert(std::make_pair(channel->Fd(), channel));
                return Update(channel, EPOLL_CTL_ADD);
            }
            return Update(channel, EPOLL_CTL_MOD);
        }
        //移除监控
        void RemoveEvent(Channel *channel) {
            auto it = _channels.find(channel->Fd());
            if (it != _channels.end()) {
                _channels.erase(it);
            }
            Update(channel, EPOLL_CTL_DEL);
        }
        //开始监控,返回活跃连接
        void Poll(std::vector *active) {
            // int epoll_wait(int epfd, struct epoll_event *evs, int maxevents, int timeout)
            int nfds = epoll_wait(_epfd, _evs, MAX_EPOLLEVENTS, -1);
            if (nfds < 0) {
                if (errno == EINTR) {
                    return ;
                }
                ERR_LOG("EPOLL WAIT ERROR:%s\n", strerror(errno));
                abort();//退出程序
            }
            for (int i = 0; i < nfds; i++) {
                auto it = _channels.find(_evs[i].data.fd);
                assert(it != _channels.end());
                it->second->SetREvents(_evs[i].events);//设置实际就绪的事件
                active->push_back(it->second);
            }
            return;
        }
};

EventLoop模块:

EventLoop模块可以理解就是我们上边所说的Reactor模块,它是对Poller模块,TimerQueue模块,Socket模块的⼀个整体封装,进⾏所有描述符的事件监控。
EventLoop模块必然是⼀个对象对应⼀个线程的模块,线程内部的⽬的就是运⾏EventLoop的启动函数。
class EventLoop {
    private:
        using Functor = std::function;
        std::thread::id _thread_id;//线程ID
        int _event_fd;//eventfd唤醒IO事件监控有可能导致的阻塞
        std::unique_ptr _event_channel;
        Poller _poller;//进行所有描述符的事件监控
        std::vector _tasks;//任务池
        std::mutex _mutex;//实现任务池操作的线程安全
        TimerWheel _timer_wheel;//定时器模块
    public:
        //执行任务池中的所有任务
        void RunAllTask() {
            std::vector functor;
            {
                std::unique_lock _lock(_mutex);
                _tasks.swap(functor);
            }
            for (auto &f : functor) {
                f();
            }
            return ;
        }
        static int CreateEventFd() {
            int efd = eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK);
            if (efd < 0) {
                ERR_LOG("CREATE EVENTFD FAILED!!");
                abort();//让程序异常退出
            }
            return efd;
        }
        void ReadEventfd() {
            uint64_t res = 0;
            int ret = read(_event_fd, &res, sizeof(res));
            if (ret < 0) {
                //EINTR -- 被信号打断;   EAGAIN -- 表示无数据可读
                if (errno == EINTR || errno == EAGAIN) {
                    return;
                }
                ERR_LOG("READ EVENTFD FAILED!");
                abort();
            }
            return ;
        }
        void WeakUpEventFd() {
            uint64_t val = 1;
            int ret = write(_event_fd, &val, sizeof(val));
            if (ret < 0) {
                if (errno == EINTR) {
                    return;
                }
                ERR_LOG("READ EVENTFD FAILED!");
                abort();
            }
            return ;
        }
    public:
        EventLoop():_thread_id(std::this_thread::get_id()), 
                    _event_fd(CreateEventFd()), 
                    _event_channel(new Channel(this, _event_fd)),
                    _timer_wheel(this) {
            //给eventfd添加可读事件回调函数,读取eventfd事件通知次数
            _event_channel->SetReadCallback(std::bind(&EventLoop::ReadEventfd, this));
            //启动eventfd的读事件监控
            _event_channel->EnableRead();
        }
        //三步走--事件监控-》就绪事件处理-》执行任务
        void Start() {
            while(1) {
                //1. 事件监控, 
                std::vector actives;
                _poller.Poll(&actives);
                //2. 事件处理。 
                for (auto &channel : actives) {
                    channel->HandleEvent();
                }
                //3. 执行任务
                RunAllTask();
            }
        }
        //用于判断当前线程是否是EventLoop对应的线程;
        bool IsInLoop() {
            return (_thread_id == std::this_thread::get_id());
        }
        void AssertInLoop() {
            assert(_thread_id == std::this_thread::get_id());
        }
        //判断将要执行的任务是否处于当前线程中,如果是则执行,不是则压入队列。
        void RunInLoop(const Functor &cb) {
            if (IsInLoop()) {
                return cb();
            }
            return QueueInLoop(cb);
        }
        //将操作压入任务池
        void QueueInLoop(const Functor &cb) {
            {
                std::unique_lock _lock(_mutex);
                _tasks.push_back(cb);
            }
            //唤醒有可能因为没有事件就绪,而导致的epoll阻塞;
            //其实就是给eventfd写入一个数据,eventfd就会触发可读事件
            WeakUpEventFd();
        }
        //添加/修改描述符的事件监控
        void UpdateEvent(Channel *channel) { return _poller.UpdateEvent(channel); }
        //移除描述符的监控
        void RemoveEvent(Channel *channel) { return _poller.RemoveEvent(channel); }
        void TimerAdd(uint64_t id, uint32_t delay, const TaskFunc &cb) { return _timer_wheel.TimerAdd(id, delay, cb); }
        void TimerRefresh(uint64_t id) { return _timer_wheel.TimerRefresh(id); }
        void TimerCancel(uint64_t id) { return _timer_wheel.TimerCancel(id); }
        bool HasTimer(uint64_t id) { return _timer_wheel.HasTimer(id); }
};

TcpServer模块:

这个模块是⼀个整体Tcp服务器模块的封装,内部封装了Acceptor模块,EventLoopThreadPool模
块。
class TcpServer {
    private:
        uint64_t _next_id;      //这是一个自动增长的连接ID,
        int _port;
        int _timeout;           //这是非活跃连接的统计时间---多长时间无通信就是非活跃连接
        bool _enable_inactive_release;//是否启动了非活跃连接超时销毁的判断标志
        EventLoop _baseloop;    //这是主线程的EventLoop对象,负责监听事件的处理
        Acceptor _acceptor;    //这是监听套接字的管理对象
        LoopThreadPool _pool;   //这是从属EventLoop线程池
        std::unordered_map _conns;//保存管理所有连接对应的shared_ptr对象

        using ConnectedCallback = std::function;
        using MessageCallback = std::function;
        using ClosedCallback = std::function;
        using AnyEventCallback = std::function;
        using Functor = std::function;
        ConnectedCallback _connected_callback;
        MessageCallback _message_callback;
        ClosedCallback _closed_callback;
        AnyEventCallback _event_callback;
    private:
        void RunAfterInLoop(const Functor &task, int delay) {
            _next_id++;
            _baseloop.TimerAdd(_next_id, delay, task);
        }
        //为新连接构造一个Connection进行管理
        void NewConnection(int fd) {
            _next_id++;
            PtrConnection conn(new Connection(_pool.NextLoop(), _next_id, fd));
            conn->SetMessageCallback(_message_callback);
            conn->SetClosedCallback(_closed_callback);
            conn->SetConnectedCallback(_connected_callback);
            conn->SetAnyEventCallback(_event_callback);
            conn->SetSrvClosedCallback(std::bind(&TcpServer::RemoveConnection, this, std::placeholders::_1));
            if (_enable_inactive_release) conn->EnableInactiveRelease(_timeout);//启动非活跃超时销毁
            conn->Established();//就绪初始化
            _conns.insert(std::make_pair(_next_id, conn));
        }
        void RemoveConnectionInLoop(const PtrConnection &conn) {
            int id = conn->Id();
            auto it = _conns.find(id);
            if (it != _conns.end()) {
                _conns.erase(it);
            }
        }
        //从管理Connection的_conns中移除连接信息
        void RemoveConnection(const PtrConnection &conn) {
            _baseloop.RunInLoop(std::bind(&TcpServer::RemoveConnectionInLoop, this, conn));
        }
    public:
        TcpServer(int port):
            _port(port), 
            _next_id(0), 
            _enable_inactive_release(false), 
            _acceptor(&_baseloop, port),
            _pool(&_baseloop) {
            _acceptor.SetAcceptCallback(std::bind(&TcpServer::NewConnection, this, std::placeholders::_1));
            _acceptor.Listen();//将监听套接字挂到baseloop上
        }
        void SetThreadCount(int count) { return _pool.SetThreadCount(count); }
        void SetConnectedCallback(const ConnectedCallback&cb) { _connected_callback = cb; }
        void SetMessageCallback(const MessageCallback&cb) { _message_callback = cb; }
        void SetClosedCallback(const ClosedCallback&cb) { _closed_callback = cb; }
        void SetAnyEventCallback(const AnyEventCallback&cb) { _event_callback = cb; }
        void EnableInactiveRelease(int timeout) { _timeout = timeout; _enable_inactive_release = true; }
        //用于添加一个定时任务
        void RunAfter(const Functor &task, int delay) {
            _baseloop.RunInLoop(std::bind(&TcpServer::RunAfterInLoop, this, task, delay));
        }
        void Start() { _pool.Create();  _baseloop.Start(); }
};


void Channel::Remove() { return _loop->RemoveEvent(this); }
void Channel::Update() { return _loop->UpdateEvent(this); }
void TimerWheel::TimerAdd(uint64_t id, uint32_t delay, const TaskFunc &cb) {
    _loop->RunInLoop(std::bind(&TimerWheel::TimerAddInLoop, this, id, delay, cb));
}
//刷新/延迟定时任务
void TimerWheel::TimerRefresh(uint64_t id) {
    _loop->RunInLoop(std::bind(&TimerWheel::TimerRefreshInLoop, this, id));
}
void TimerWheel::TimerCancel(uint64_t id) {
    _loop->RunInLoop(std::bind(&TimerWheel::TimerCancelInLoop, this, id));
}


class NetWork {
    public:
        NetWork() {
            DBG_LOG("SIGPIPE INIT");
            signal(SIGPIPE, SIG_IGN);
        }
};

HTTP协议组件模块:

Util模块:

std::unordered_map _statu_msg = {
    {100,  "Continue"},
    {101,  "Switching Protocol"},
    {102,  "Processing"},
    {103,  "Early Hints"},
    {200,  "OK"},
    {201,  "Created"},
    {202,  "Accepted"},
    {203,  "Non-Authoritative Information"},
    {204,  "No Content"},
    {205,  "Reset Content"},
    {206,  "Partial Content"},
    {207,  "Multi-Status"},
    {208,  "Already Reported"},
    {226,  "IM Used"},
    {300,  "Multiple Choice"},
    {301,  "Moved Permanently"},
    {302,  "Found"},
    {303,  "See Other"},
    {304,  "Not Modified"},
    {305,  "Use Proxy"},
    {306,  "unused"},
    {307,  "Temporary Redirect"},
    {308,  "Permanent Redirect"},
    {400,  "Bad Request"},
    {401,  "Unauthorized"},
    {402,  "Payment Required"},
    {403,  "Forbidden"},
    {404,  "Not Found"},
    {405,  "Method Not Allowed"},
    {406,  "Not Acceptable"},
    {407,  "Proxy Authentication Required"},
    {408,  "Request Timeout"},
    {409,  "Conflict"},
    {410,  "Gone"},
    {411,  "Length Required"},
    {412,  "Precondition Failed"},
    {413,  "Payload Too Large"},
    {414,  "URI Too Long"},
    {415,  "Unsupported Media Type"},
    {416,  "Range Not Satisfiable"},
    {417,  "Expectation Failed"},
    {418,  "I'm a teapot"},
    {421,  "Misdirected Request"},
    {422,  "Unprocessable Entity"},
    {423,  "Locked"},
    {424,  "Failed Dependency"},
    {425,  "Too Early"},
    {426,  "Upgrade Required"},
    {428,  "Precondition Required"},
    {429,  "Too Many Requests"},
    {431,  "Request Header Fields Too Large"},
    {451,  "Unavailable For Legal Reasons"},
    {501,  "Not Implemented"},
    {502,  "Bad Gateway"},
    {503,  "Service Unavailable"},
    {504,  "Gateway Timeout"},
    {505,  "HTTP Version Not Supported"},
    {506,  "Variant Also Negotiates"},
    {507,  "Insufficient Storage"},
    {508,  "Loop Detected"},
    {510,  "Not Extended"},
    {511,  "Network Authentication Required"}
};

std::unordered_map _mime_msg = {
    {".aac",        "audio/aac"},
    {".abw",        "application/x-abiword"},
    {".arc",        "application/x-freearc"},
    {".avi",        "video/x-msvideo"},
    {".azw",        "application/vnd.amazon.ebook"},
    {".bin",        "application/octet-stream"},
    {".bmp",        "image/bmp"},
    {".bz",         "application/x-bzip"},
    {".bz2",        "application/x-bzip2"},
    {".csh",        "application/x-csh"},
    {".css",        "text/css"},
    {".csv",        "text/csv"},
    {".doc",        "application/msword"},
    {".docx",       "application/vnd.openxmlformats-officedocument.wordprocessingml.document"},
    {".eot",        "application/vnd.ms-fontobject"},
    {".epub",       "application/epub+zip"},
    {".gif",        "image/gif"},
    {".htm",        "text/html"},
    {".html",       "text/html"},
    {".ico",        "image/vnd.microsoft.icon"},
    {".ics",        "text/calendar"},
    {".jar",        "application/java-archive"},
    {".jpeg",       "image/jpeg"},
    {".jpg",        "image/jpeg"},
    {".js",         "text/javascript"},
    {".json",       "application/json"},
    {".jsonld",     "application/ld+json"},
    {".mid",        "audio/midi"},
    {".midi",       "audio/x-midi"},
    {".mjs",        "text/javascript"},
    {".mp3",        "audio/mpeg"},
    {".mpeg",       "video/mpeg"},
    {".mpkg",       "application/vnd.apple.installer+xml"},
    {".odp",        "application/vnd.oasis.opendocument.presentation"},
    {".ods",        "application/vnd.oasis.opendocument.spreadsheet"},
    {".odt",        "application/vnd.oasis.opendocument.text"},
    {".oga",        "audio/ogg"},
    {".ogv",        "video/ogg"},
    {".ogx",        "application/ogg"},
    {".otf",        "font/otf"},
    {".png",        "image/png"},
    {".pdf",        "application/pdf"},
    {".ppt",        "application/vnd.ms-powerpoint"},
    {".pptx",       "application/vnd.openxmlformats-officedocument.presentationml.presentation"},
    {".rar",        "application/x-rar-compressed"},
    {".rtf",        "application/rtf"},
    {".sh",         "application/x-sh"},
    {".svg",        "image/svg+xml"},
    {".swf",        "application/x-shockwave-flash"},
    {".tar",        "application/x-tar"},
    {".tif",        "image/tiff"},
    {".tiff",       "image/tiff"},
    {".ttf",        "font/ttf"},
    {".txt",        "text/plain"},
    {".vsd",        "application/vnd.visio"},
    {".wav",        "audio/wav"},
    {".weba",       "audio/webm"},
    {".webm",       "video/webm"},
    {".webp",       "image/webp"},
    {".woff",       "font/woff"},
    {".woff2",      "font/woff2"},
    {".xhtml",      "application/xhtml+xml"},
    {".xls",        "application/vnd.ms-excel"},
    {".xlsx",       "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"},
    {".xml",        "application/xml"},
    {".xul",        "application/vnd.mozilla.xul+xml"},
    {".zip",        "application/zip"},
    {".3gp",        "video/3gpp"},
    {".3g2",        "video/3gpp2"},
    {".7z",         "application/x-7z-compressed"}
};

class Util {
    public:
        //字符串分割函数,将src字符串按照sep字符进行分割,得到的各个字串放到arry中,最终返回字串的数量
        static size_t Split(const std::string &src, const std::string &sep, std::vector *arry) {
            size_t offset = 0;
            // 有10个字符,offset是查找的起始位置,范围应该是0~9,offset==10就代表已经越界了
            while(offset < src.size()) {
                size_t pos = src.find(sep, offset);//在src字符串偏移量offset处,开始向后查找sep字符/字串,返回查找到的位置
                if (pos == std::string::npos) {//没有找到特定的字符
                    //将剩余的部分当作一个字串,放入arry中
                    if(pos == src.size()) break;
                    arry->push_back(src.substr(offset));
                    return arry->size();
                }
                if (pos == offset) {
                    offset = pos + sep.size();
                    continue;//当前字串是一个空的,没有内容
                }
                arry->push_back(src.substr(offset, pos - offset));
                offset = pos + sep.size();
            }
            return arry->size();
        }
        //读取文件的所有内容,将读取的内容放到一个Buffer中
        static bool ReadFile(const std::string &filename, std::string *buf) {
            std::ifstream ifs(filename, std::ios::binary);
            if (ifs.is_open() == false) {
                printf("OPEN %s FILE FAILED!!", filename.c_str());
                return false;
            }
            size_t fsize = 0;
            ifs.seekg(0, ifs.end);//跳转读写位置到末尾
            fsize = ifs.tellg();  //获取当前读写位置相对于起始位置的偏移量,从末尾偏移刚好就是文件大小
            ifs.seekg(0, ifs.beg);//跳转到起始位置
            buf->resize(fsize); //开辟文件大小的空间
            ifs.read(&(*buf)[0], fsize);
            if (ifs.good() == false) {
                printf("READ %s FILE FAILED!!", filename.c_str());
                ifs.close();
                return false;
            }
            ifs.close();
            return true;
        }
        //向文件写入数据
        static bool WriteFile(const std::string &filename, const std::string &buf) {
            std::ofstream ofs(filename, std::ios::binary | std::ios::trunc);
            if (ofs.is_open() == false) {
                printf("OPEN %s FILE FAILED!!", filename.c_str());
                return false;
            }
            ofs.write(buf.c_str(), buf.size());
            if (ofs.good() == false) {
                ERR_LOG("WRITE %s FILE FAILED!", filename.c_str());
                ofs.close();    
                return false;
            }
            ofs.close();
            return true;
        }
        //URL编码,避免URL中资源路径与查询字符串中的特殊字符与HTTP请求中特殊字符产生歧义
        //编码格式:将特殊字符的ascii值,转换为两个16进制字符,前缀%   C++ -> C%2B%2B
        //  不编码的特殊字符: RFC3986文档规定 . - _ ~ 字母,数字属于绝对不编码字符
        //RFC3986文档规定,编码格式 %HH 
        //W3C标准中规定,查询字符串中的空格,需要编码为+, 解码则是+转空格
        static std::string UrlEncode(const std::string url, bool convert_space_to_plus) {
            std::string res;
            for (auto &c : url) {
                if (c == '.' || c == '-' || c == '_' || c == '~' || isalnum(c)) {
                    res += c;
                    continue;
                }
                if (c == ' ' && convert_space_to_plus == true) {
                    res += '+';
                    continue;
                }
                //剩下的字符都是需要编码成为 %HH 格式
                char tmp[4] = {0};
                //snprintf 与 printf比较类似,都是格式化字符串,只不过一个是打印,一个是放到一块空间中
                snprintf(tmp, 4, "%%%02X", c);
                res += tmp;
            }
            return res;
        }
        static char HEXTOI(char c) {
            if (c >= '0' && c <= '9') {
                return c - '0';
            }else if (c >= 'a' && c <= 'z') {
                return c - 'a' + 10;
            }else if (c >= 'A' && c <= 'Z') {
                return c - 'A' + 10;
            }
            return -1; 
        }
        static std::string UrlDecode(const std::string url, bool convert_plus_to_space) {
            //遇到了%,则将紧随其后的2个字符,转换为数字,第一个数字左移4位,然后加上第二个数字  + -> 2b  %2b->2 << 4 + 11
            std::string res;
            for (int i = 0; i < url.size(); i++) {
                if (url[i] == '+' && convert_plus_to_space == true) {
                    res += ' ';
                    continue;
                }
                if (url[i] == '%' && (i + 2) < url.size()) {
                    char v1 = HEXTOI(url[i + 1]);
                    char v2 = HEXTOI(url[i + 2]);
                    char v = v1 * 16 + v2;
                    res += v;
                    i += 2;
                    continue;
                }
                res += url[i];
            }
            return res;
        }
        //响应状态码的描述信息获取
        static std::string StatuDesc(int statu) {
            
            auto it = _statu_msg.find(statu);
            if (it != _statu_msg.end()) {
                return it->second;
            }
            return "Unknow";
        }
        //根据文件后缀名获取文件mime
        static std::string ExtMime(const std::string &filename) {
            
            // a.b.txt  先获取文件扩展名
            size_t pos = filename.find_last_of('.');
            if (pos == std::string::npos) {
                return "application/octet-stream";
            }
            //根据扩展名,获取mime
            std::string ext = filename.substr(pos);
            auto it = _mime_msg.find(ext);
            if (it == _mime_msg.end()) {
                return "application/octet-stream";
            }
            return it->second;
        }
        //判断一个文件是否是一个目录
        static bool IsDirectory(const std::string &filename) {
            struct stat st;
            int ret = stat(filename.c_str(), &st);
            if (ret < 0) {
                return false;
            }
            return S_ISDIR(st.st_mode);
        }
        //判断一个文件是否是一个普通文件
        static bool IsRegular(const std::string &filename) {
            struct stat st;
            int ret = stat(filename.c_str(), &st);
            if (ret < 0) {
                return false;
            }
            return S_ISREG(st.st_mode);
        }
        //http请求的资源路径有效性判断
        // /index.html  --- 前边的/叫做相对根目录  映射的是某个服务器上的子目录
        // 想表达的意思就是,客户端只能请求相对根目录中的资源,其他地方的资源都不予理会
        // /../login, 这个路径中的..会让路径的查找跑到相对根目录之外,这是不合理的,不安全的
        static bool ValidPath(const std::string &path) {
            //思想:按照/进行路径分割,根据有多少子目录,计算目录深度,有多少层,深度不能小于0
            std::vector subdir;
            Split(path, "/", &subdir);
            int level = 0;
            for (auto &dir : subdir) {
                if (dir == "..") {
                    level--; //任意一层走出相对根目录,就认为有问题
                    if (level < 0) return false;
                    continue;
                }
                level++;
            }
            return true;
        }
};

HttpRequest模块:

class HttpRequest {
    public:
        std::string _method;      //请求方法
        std::string _path;        //资源路径
        std::string _version;     //协议版本
        std::string _body;        //请求正文
        std::smatch _matches;     //资源路径的正则提取数据
        std::unordered_map _headers;  //头部字段
        std::unordered_map _params;   //查询字符串
    public:
        HttpRequest():_version("HTTP/1.1") {}
        void ReSet() {
            _method.clear();
            _path.clear();
            _version = "HTTP/1.1";
            _body.clear();
            std::smatch match;
            _matches.swap(match);
            _headers.clear();
            _params.clear();
        }
        //插入头部字段
        void SetHeader(const std::string &key, const std::string &val) {
            _headers.insert(std::make_pair(key, val));
        }
        //判断是否存在指定头部字段
        bool HasHeader(const std::string &key) const {
            auto it = _headers.find(key);
            if (it == _headers.end()) {
                return false;
            }
            return true;
        }
        //获取指定头部字段的值
        std::string GetHeader(const std::string &key) const {
            auto it = _headers.find(key);
            if (it == _headers.end()) {
                return "";
            }
            return it->second;
        }
        //插入查询字符串
        void SetParam(const std::string &key, const std::string &val) {
            _params.insert(std::make_pair(key, val));
        }
        //判断是否有某个指定的查询字符串
        bool HasParam(const std::string &key) const {
            auto it = _params.find(key);
            if (it == _params.end()) {
                return false;
            }
            return true;
        }
        //获取指定的查询字符串
        std::string GetParam(const std::string &key) const {
            auto it = _params.find(key);
            if (it == _params.end()) {
                return "";
            }
            return it->second;
        }
        //获取正文长度
        size_t ContentLength() const {
            // Content-Length: 1234\r\n
            bool ret = HasHeader("Content-Length");
            if (ret == false) {
                return 0;
            }
            std::string clen = GetHeader("Content-Length");
            return std::stol(clen);
        }
        //判断是否是短链接
        bool Close() const {
            // 没有Connection字段,或者有Connection但是值是close,则都是短链接,否则就是长连接
            if (HasHeader("Connection") == true && GetHeader("Connection") == "keep-alive") {
                return false;
            }
            return true;
        }
};

HttpContext模块:

class HttpContext {
    private:
        int _resp_statu; //响应状态码
        HttpRecvStatu _recv_statu; //当前接收及解析的阶段状态
        HttpRequest _request;  //已经解析得到的请求信息
    private:
        bool ParseHttpLine(const std::string &line) {
            std::smatch matches;
            std::regex e("(GET|HEAD|POST|PUT|DELETE) ([^?]*)(?:\\?(.*))? (HTTP/1\\.[01])(?:\n|\r\n)?", std::regex::icase);
            bool ret = std::regex_match(line, matches, e);
            if (ret == false) {
                _recv_statu = RECV_HTTP_ERROR;
                _resp_statu = 400;//BAD REQUEST
                return false;
            }
            //0 : GET /bitejiuyeke/login?user=xiaoming&pass=123123 HTTP/1.1
            //1 : GET
            //2 : /bitejiuyeke/login
            //3 : user=xiaoming&pass=123123
            //4 : HTTP/1.1
            //请求方法的获取
            _request._method = matches[1];
            std::transform(_request._method.begin(), _request._method.end(), _request._method.begin(), ::toupper);
            //资源路径的获取,需要进行URL解码操作,但是不需要+转空格
            _request._path = Util::UrlDecode(matches[2], false);
            //协议版本的获取
            _request._version = matches[4];
            //查询字符串的获取与处理
            std::vector query_string_arry;
            std::string query_string = matches[3];
            //查询字符串的格式 key=val&key=val....., 先以 & 符号进行分割,得到各个字串
            Util::Split(query_string, "&", &query_string_arry);
            //针对各个字串,以 = 符号进行分割,得到key 和val, 得到之后也需要进行URL解码
            for (auto &str : query_string_arry) {
                size_t pos = str.find("=");
                if (pos == std::string::npos) {
                    _recv_statu = RECV_HTTP_ERROR;
                    _resp_statu = 400;//BAD REQUEST
                    return false;
                }
                std::string key = Util::UrlDecode(str.substr(0, pos), true);  
                std::string val = Util::UrlDecode(str.substr(pos + 1), true);
                _request.SetParam(key, val);
            }
            return true;
        }
        bool RecvHttpLine(Buffer *buf) {
            if (_recv_statu != RECV_HTTP_LINE) return false;
            //1. 获取一行数据,带有末尾的换行 
            std::string line = buf->GetLineAndPop();
            //2. 需要考虑的一些要素:缓冲区中的数据不足一行, 获取的一行数据超大
            if (line.size() == 0) {
                //缓冲区中的数据不足一行,则需要判断缓冲区的可读数据长度,如果很长了都不足一行,这是有问题的
                if (buf->ReadAbleSize() > MAX_LINE) {
                    _recv_statu = RECV_HTTP_ERROR;
                    _resp_statu = 414;//URI TOO LONG
                    return false;
                }
                //缓冲区中数据不足一行,但是也不多,就等等新数据的到来
                return true;
            }
            if (line.size() > MAX_LINE) {
                _recv_statu = RECV_HTTP_ERROR;
                _resp_statu = 414;//URI TOO LONG
                return false;
            }
            bool ret = ParseHttpLine(line);
            if (ret == false) {
                return false;
            }
            //首行处理完毕,进入头部获取阶段
            _recv_statu = RECV_HTTP_HEAD;
            return true;
        }
        bool RecvHttpHead(Buffer *buf) {
            if (_recv_statu != RECV_HTTP_HEAD) return false;
            //一行一行取出数据,直到遇到空行为止, 头部的格式 key: val\r\nkey: val\r\n....
            while(1){
                std::string line = buf->GetLineAndPop();
                //2. 需要考虑的一些要素:缓冲区中的数据不足一行, 获取的一行数据超大
                if (line.size() == 0) {
                    //缓冲区中的数据不足一行,则需要判断缓冲区的可读数据长度,如果很长了都不足一行,这是有问题的
                    if (buf->ReadAbleSize() > MAX_LINE) {
                        _recv_statu = RECV_HTTP_ERROR;
                        _resp_statu = 414;//URI TOO LONG
                        return false;
                    }
                    //缓冲区中数据不足一行,但是也不多,就等等新数据的到来
                    return true;
                }
                if (line.size() > MAX_LINE) {
                    _recv_statu = RECV_HTTP_ERROR;
                    _resp_statu = 414;//URI TOO LONG
                    return false;
                }
                if (line == "\n" || line == "\r\n") {
                    break;
                }
                bool ret = ParseHttpHead(line);
                if (ret == false) {
                    return false;
                }
            }
            //头部处理完毕,进入正文获取阶段
            _recv_statu = RECV_HTTP_BODY;
            return true;
        }
        bool ParseHttpHead(std::string &line) {
            //key: val\r\nkey: val\r\n....
            if (line.back() == '\n') line.pop_back();//末尾是换行则去掉换行字符
            if (line.back() == '\r') line.pop_back();//末尾是回车则去掉回车字符
            size_t pos = line.find(": ");
            if (pos == std::string::npos) {
                _recv_statu = RECV_HTTP_ERROR;
                _resp_statu = 400;//
                return false;
            }
            std::string key = line.substr(0, pos);  
            std::string val = line.substr(pos + 2);
            _request.SetHeader(key, val);
            return true;
        }
        bool RecvHttpBody(Buffer *buf) {
            if (_recv_statu != RECV_HTTP_BODY) return false;
            //1. 获取正文长度
            size_t content_length = _request.ContentLength();
            if (content_length == 0) {
                //没有正文,则请求接收解析完毕
                _recv_statu = RECV_HTTP_OVER;
                return true;
            }
            //2. 当前已经接收了多少正文,其实就是往  _request._body 中放了多少数据了
            size_t real_len = content_length - _request._body.size();//实际还需要接收的正文长度
            //3. 接收正文放到body中,但是也要考虑当前缓冲区中的数据,是否是全部的正文
            //  3.1 缓冲区中数据,包含了当前请求的所有正文,则取出所需的数据
            if (buf->ReadAbleSize() >= real_len) {
                _request._body.append(buf->ReadPosition(), real_len);
                buf->MoveReadOffset(real_len);
                _recv_statu = RECV_HTTP_OVER;
                return true;
            }
            //  3.2 缓冲区中数据,无法满足当前正文的需要,数据不足,取出数据,然后等待新数据到来
            _request._body.append(buf->ReadPosition(), buf->ReadAbleSize());
            buf->MoveReadOffset(buf->ReadAbleSize());
            return true;
        }
    public:
        HttpContext():_resp_statu(200), _recv_statu(RECV_HTTP_LINE) {}
        void ReSet() {
            _resp_statu = 200;
            _recv_statu = RECV_HTTP_LINE;
            _request.ReSet();
        }
        int RespStatu() { return _resp_statu; }
        HttpRecvStatu RecvStatu() { return _recv_statu; }
        HttpRequest &Request() { return _request; }
        //接收并解析HTTP请求
        void RecvHttpRequest(Buffer *buf) {
            //不同的状态,做不同的事情,但是这里不要break, 因为处理完请求行后,应该立即处理头部,而不是退出等新数据
            switch(_recv_statu) {
                case RECV_HTTP_LINE: RecvHttpLine(buf);
                case RECV_HTTP_HEAD: RecvHttpHead(buf);
                case RECV_HTTP_BODY: RecvHttpBody(buf);
            }
            return;
        }
};

HttpServer模块:

class HttpServer {
    private:
        using Handler = std::function;
        using Handlers = std::vector>;
        Handlers _get_route;
        Handlers _post_route;
        Handlers _put_route;
        Handlers _delete_route;
        std::string _basedir; //静态资源根目录
        TcpServer _server;
    private:
        void ErrorHandler(const HttpRequest &req, HttpResponse *rsp) {
            //1. 组织一个错误展示页面
            std::string body;
            body += "";
            body += "";
            body += "";
            body += "";
            body += "";
            body += "

"; body += std::to_string(rsp->_statu); body += " "; body += Util::StatuDesc(rsp->_statu); body += "

"; body += ""; body += ""; //2. 将页面数据,当作响应正文,放入rsp中 rsp->SetContent(body, "text/html"); } //将HttpResponse中的要素按照http协议格式进行组织,发送 void WriteReponse(const PtrConnection &conn, const HttpRequest &req, HttpResponse &rsp) { //1. 先完善头部字段 if (req.Close() == true) { rsp.SetHeader("Connection", "close"); }else { rsp.SetHeader("Connection", "keep-alive"); } if (rsp._body.empty() == false && rsp.HasHeader("Content-Length") == false) { rsp.SetHeader("Content-Length", std::to_string(rsp._body.size())); } if (rsp._body.empty() == false && rsp.HasHeader("Content-Type") == false) { rsp.SetHeader("Content-Type", "application/octet-stream"); } if (rsp._redirect_flag == true) { rsp.SetHeader("Location", rsp._redirect_url); } //2. 将rsp中的要素,按照http协议格式进行组织 std::stringstream rsp_str; rsp_str << req._version << " " << std::to_string(rsp._statu) << " " << Util::StatuDesc(rsp._statu) << "\r\n"; for (auto &head : rsp._headers) { rsp_str << head.first << ": " << head.second << "\r\n"; } rsp_str << "\r\n"; rsp_str << rsp._body; //3. 发送数据 conn->Send(rsp_str.str().c_str(), rsp_str.str().size()); } bool IsFileHandler(const HttpRequest &req) { // 1. 必须设置了静态资源根目录 if (_basedir.empty()) { return false; } // 2. 请求方法,必须是GET / HEAD请求方法 if (req._method != "GET" && req._method != "HEAD") { return false; } // 3. 请求的资源路径必须是一个合法路径 if (Util::ValidPath(req._path) == false) { return false; } // 4. 请求的资源必须存在,且是一个普通文件 // 有一种请求比较特殊 -- 目录:/, /image/, 这种情况给后边默认追加一个 index.html // index.html /image/a.png // 不要忘了前缀的相对根目录,也就是将请求路径转换为实际存在的路径 /image/a.png -> ./wwwroot/image/a.png std::string req_path = _basedir + req._path;//为了避免直接修改请求的资源路径,因此定义一个临时对象 if (req._path.back() == '/') { req_path += "index.html"; } if (Util::IsRegular(req_path) == false) { return false; } return true; } //静态资源的请求处理 --- 将静态资源文件的数据读取出来,放到rsp的_body中, 并设置mime void FileHandler(const HttpRequest &req, HttpResponse *rsp) { std::string req_path = _basedir + req._path; if (req._path.back() == '/') { req_path += "index.html"; } bool ret = Util::ReadFile(req_path, &rsp->_body); if (ret == false) { return; } std::string mime = Util::ExtMime(req_path); rsp->SetHeader("Content-Type", mime); return; } //功能性请求的分类处理 void Dispatcher(HttpRequest &req, HttpResponse *rsp, Handlers &handlers) { //在对应请求方法的路由表中,查找是否含有对应资源请求的处理函数,有则调用,没有则发挥404 //思想:路由表存储的时键值对 -- 正则表达式 & 处理函数 //使用正则表达式,对请求的资源路径进行正则匹配,匹配成功就使用对应函数进行处理 // /numbers/(\d+) /numbers/12345 for (auto &handler : handlers) { const std::regex &re = handler.first; const Handler &functor = handler.second; bool ret = std::regex_match(req._path, req._matches, re); if (ret == false) { continue; } return functor(req, rsp);//传入请求信息,和空的rsp,执行处理函数 } rsp->_statu = 404; } void Route(HttpRequest &req, HttpResponse *rsp) { //1. 对请求进行分辨,是一个静态资源请求,还是一个功能性请求 // 静态资源请求,则进行静态资源的处理 // 功能性请求,则需要通过几个请求路由表来确定是否有处理函数 // 既不是静态资源请求,也没有设置对应的功能性请求处理函数,就返回405 if (IsFileHandler(req) == true) { //是一个静态资源请求, 则进行静态资源请求的处理 return FileHandler(req, rsp); } if (req._method == "GET" || req._method == "HEAD") { return Dispatcher(req, rsp, _get_route); }else if (req._method == "POST") { return Dispatcher(req, rsp, _post_route); }else if (req._method == "PUT") { return Dispatcher(req, rsp, _put_route); }else if (req._method == "DELETE") { return Dispatcher(req, rsp, _delete_route); } rsp->_statu = 405;// Method Not Allowed return ; } //设置上下文 void OnConnected(const PtrConnection &conn) { conn->SetContext(HttpContext()); DBG_LOG("NEW CONNECTION %p", conn.get()); } //缓冲区数据解析+处理 void OnMessage(const PtrConnection &conn, Buffer *buffer) { while(buffer->ReadAbleSize() > 0){ //1. 获取上下文 HttpContext *context = conn->GetContext()->get(); //2. 通过上下文对缓冲区数据进行解析,得到HttpRequest对象 // 1. 如果缓冲区的数据解析出错,就直接回复出错响应 // 2. 如果解析正常,且请求已经获取完毕,才开始去进行处理 context->RecvHttpRequest(buffer); HttpRequest &req = context->Request(); HttpResponse rsp(context->RespStatu()); if (context->RespStatu() >= 400) { //进行错误响应,关闭连接 ErrorHandler(req, &rsp);//填充一个错误显示页面数据到rsp中 WriteReponse(conn, req, rsp);//组织响应发送给客户端 context->ReSet(); buffer->MoveReadOffset(buffer->ReadAbleSize());//出错了就把缓冲区数据清空 conn->Shutdown();//关闭连接 return; } if (context->RecvStatu() != RECV_HTTP_OVER) { //当前请求还没有接收完整,则退出,等新数据到来再重新继续处理 return; } //3. 请求路由 + 业务处理 Route(req, &rsp); //4. 对HttpResponse进行组织发送 WriteReponse(conn, req, rsp); //5. 重置上下文 context->ReSet(); //6. 根据长短连接判断是否关闭连接或者继续处理 if (rsp.Close() == true) conn->Shutdown();//短链接则直接关闭 } return; } public: HttpServer(int port, int timeout = DEFALT_TIMEOUT):_server(port) { _server.EnableInactiveRelease(timeout); _server.SetConnectedCallback(std::bind(&HttpServer::OnConnected, this, std::placeholders::_1)); _server.SetMessageCallback(std::bind(&HttpServer::OnMessage, this, std::placeholders::_1, std::placeholders::_2)); } void SetBaseDir(const std::string &path) { assert(Util::IsDirectory(path) == true); _basedir = path; } /*设置/添加,请求(请求的正则表达)与处理函数的映射关系*/ void Get(const std::string &pattern, const Handler &handler) { _get_route.push_back(std::make_pair(std::regex(pattern), handler)); } void Post(const std::string &pattern, const Handler &handler) { _post_route.push_back(std::make_pair(std::regex(pattern), handler)); } void Put(const std::string &pattern, const Handler &handler) { _put_route.push_back(std::make_pair(std::regex(pattern), handler)); } void Delete(const std::string &pattern, const Handler &handler) { _delete_route.push_back(std::make_pair(std::regex(pattern), handler)); } void SetThreadCount(int count) { _server.SetThreadCount(count); } void Listen() { _server.Start(); } };

你可能感兴趣的:(服务器)