Sklearn机器学习使用总结

加载数据集

波士顿房价:回归

 from sklearn.datasets import load_boston
 data = load_boston()
 X, y =data.data, data.target.reshape(-1, 1) # X:shape=[506, 13],y:shape=[506, 1]

手写数字:10类

 from sklearn.datasets import load_digits
 data = load_digits()
 X = data.data 或 X = data.images # 区别:前者shape=[1797, 64],后者[1797, 8, 8]
 y = data.target.reshape(-1, 1) # shape=[1797, 1] 

纸鸢花:3类

 from sklearn.datasets import load_iris
 data = load_iris()
 X, y = data.data, data.target.reshape(-1, 1) # X:shape=[150, 4],y:shape=[150, 1]

训练集划分

 from sklearn. model_selection import train_test_split
 X_train, X_test, y_train, y_test = train_test_split(X, y)

标准化

 from sklearn.preprocessing import StandardScaler
 SS_X = StandardScaler()
 SS_y = StandardScaler()
 X_train = SS_X.fit_transform(X_train)
 X_test = SS_X.transform(X_test)
 y_train = SS_y.fit_transform(y_train)
 y_test = SS_y.transform(y_test)
 # fit_transform和transform的区别在于前者能更新mean和var,而后者不能
 ​
 # 查看均值,方差:
 SS_X.mean, SS_X.var
 SS_y.mean, SS_y.var

网格搜索最优超参数

 # 以逻辑回归为例:
 from sklearn.model_selection import train_test_split, GridSearchCV
 from sklearn.pipeline import Pipeline
 pipeline = Pipeline([("clf", LogisticRegression())])
 parameters = {"clfpenalty": ("l1", "l2"), "clfC": (0.01, 0.1, 1, 10)}
 grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=0, scoring="accuracy", cv=3)
 grid_search.fit(X_train, y_train)
 best_parameters = grid_search.best_estimator_.get_params()
 best_score = grid_search.best_score_
 print("最佳效果:%0.3f" % best_score)
 print("最优参数组合:", [[para_name, best_parameters[para_name]] for para_name in parameters.keys()])

保存和加载模型

 import joblib
 joblib.dump(model, 'model.pkl') # 模型保存
 model = joblib.load('model.pkl') # 模型加载

模型评估

评估score

 model.score(X_test, y_test)
 sklearn.linear_model.LinearRegression:# 默认r2_score 
 sklearn.linear_model.SGDRegressor:# 默认为”squared_loss”
 sklearn.linear_model.LogisticRegression:# 默认为”accuracy”
 sklearn.tree.DecisionTreeClassifier:# 默认为”accuracy”

交叉验证

 from sklearn.model_selection import cross_val_score
 scores = cross_val_score(model, X, y, scoring=None, cv=k)
 # scoring=None默认使用model的评估方法,可设为”squared_loss”、”accuracy”、”precision”、”recall”、”f1”等

混淆矩阵

 from sklearn.metrics import confusion_matrix
 cm = confusion_matrix(y_test, y_pred)

准确率

 from sklearn.metrics import accuracy_score
 accuracy = accuracy_score(y_test, y_pred)

精确率

 from sklearn.metrics import precision_score
 precision = precision_score(y_test, y_pred)

召回率

 from sklearn.metrics import recall_score
 recall = recall_score(y_test, y_pred)

F1

 from sklearn.metrics import f1_score
 f1 = recall_score(y_test, y_pred)

ROC

 from sklearn.metrics import roc_curve
 fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(X_test)[:, 0])

AUC

 from sklearn.metrics import auc
 auc_val = auc(fpr, tpr)

打印报告

 from sklearn.metrics import classification_report
 classification_report(y_test, y_pred)

线性回归

普通线性回归

 from sklearn.linear_model import LinearRegression
 model = LinearRegression()
 model.fit(X_train, y_train)
 model.predict(X_test)

多项式回归 (k) 阶

 from sklearn.linear_model import LinearRegression
 from sklearn.preprocessing import PolynomialFeatures
 PF = PolynomialFeatures(degree=k)
 X_train_k, y_train_k = PF.fit_transform(X_train), y_train
 X_test_k, y_test_k = PF.transform(X_test), y_test
 model = LinearRegression()
 model.fit(X_train_k, y_train_k)
 model.predict(X_test_k)

梯度下降法拟合

 from sklearn.linear_model import SGDRegressor
 model = SGDRegressor(loss="squared_loss") # 默认是squared_loss
 model.fit(X_train, y_train)
 model.predict(X_test)

逻辑回归

 from sklearn.linear_model import LogisticRegression
 model = LinearRegression()
 model.fit(X_train, y_train)
 model.predict(X_test) 或 model.predict_proba(X_test)

SVM

 from sklearn.svm import SVC
 model = SVC(kernel="rbf", C=2.0, gamma=0.1)
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

决策树

 from sklearn.tree import DecisionTreeClassifier
 model = DecisionTreeClassifier(criterion="entropy", max_depth=10, min_samples_split=2, min_samples_leaf=3)
 model.fit(X_train, y_train)
 model.predict(X_test)

随机森林

 from sklearn.ensemble import RandomForestClassifier
 model = RandomForestClassifier(criterion="entropy", n_estimators=40, max_depth=16, min_samples_split=2, min_samples_leaf=1)
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

GBDT

 from sklearn.ensemble import GradientBoostingRegressor
 model = GradientBoostingRegressor(learning_rate=0.1, n_estimators=100, max_depth=3)
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

XGBoost

 from xgboost import XGBRegressor
 model = XGBRegressor(learning_rate=0.1, n_estimators=100, max_depth=3)
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

LightGBM

 from lightgbm import LGBMRegressor
 model = LGBMRegressor(boosting_type="gbdt", learning_rate=0.1, n_estimators=100, max_depth=3)
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

KNN

 from sklearn.neighbors import KNeighborsClassifier
 model = KNeighborsClassifier(n_neighbors=3)
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

聚类

K-means

 from sklearn.cluster import KMeans
 model = KMeans(n_clusters=k)
 model.fit(X)
 labels, centers = model.labels, model.cluster_centers

高斯混合模型GMM

from sklearn.mixture import GaussianMixture
model = GaussianMixture(n_components=k).fit(X)
labels = model.predict(X)
probas = np.max(model.predict_proba(X),axis=1).round(3)

降维

PCA

from sklearn.decomposition import PCA
model = PCA(n_components=2)
Xr = model.fit_transform(X)

朴素贝叶斯NB

from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

感知机

from sklearn.linear_model import Perceptron
model = Perceptron(max_iter=1000, eta0=0.1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

多层感知机

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(hidden_layer_sizes=(32, 16), activation="logistic", solver="sgd",
                      batch_size=8, learning_rate_init=0.01, max_iter=200)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

你可能感兴趣的:(机器学习,人工智能,sklearn,python)