reid-strong-baseline代码阅读笔记

一、简介

https://github.com/michuanhaohao/reid-strong-baseline
是用于行人重识别的代码,它是论文Bag of Tricks and a Strong Baseline for Deep Person Re-Identification的对应代码,这篇论文改进了standard baseline方法,达到了更好的行人重识别效果。以下是梳理的训练部分代码的内容

二、准备数据集

数据集加载的具体实现针对不同数据集有所不同,在此不进行详细叙述。只要知道最后加载出的ImageDataset的一个item格式为:

return img, pid, camid, img_path

三、网络构建

默认配置下,网络结构如下所述。
首先看看网络的forward函数:

    def forward(self, x):

        global_feat = self.gap(self.base(x))  # (b, 2048, 1, 1)
        global_feat = global_feat.view(global_feat.shape[0], -1)  # flatten to (bs, 2048)

        if self.neck == 'no':
            feat = global_feat
        elif self.neck == 'bnneck':
            feat = self.bottleneck(global_feat)  # normalize for angular softmax

        if self.training:
            cls_score = self.classifier(feat)
            return cls_score, global_feat  # global feature for triplet loss
        else:
            if self.neck_feat == 'after':
                # print("Test with feature after BN")
                return feat
            else:
                # print("Test with feature before BN")
                return global_feat

贴一张论文中的网络结构图结合来看:


屏幕快照 2019-10-02 下午6.57.39.png

网络大致分为以下几块:

3.1 backbone

默认下是resnet50网络,只是resnet50的最后一个卷积层的stride = 1

3.2 gap

gap网络代码如下:

self.gap = nn.AdaptiveAvgPool2d(1)

其实就是一层AdaptiveAvgPool2d层
在经历过gap层后再拍平成(bs, 2048)的尺寸,得到global_feat

3.3 neck

默认配置为bnneck,bnneck的结构如下:

            self.bottleneck = nn.BatchNorm1d(self.in_planes)
            self.bottleneck.bias.requires_grad_(False)  # no shift
            
            self.bottleneck.apply(weights_init_kaiming)

其实就是一个BatchNorm1d层,使用Kaiming initialization初始化,kaiming initialization在pytorch中有实现
这层输入global_feat得到feat

3.4 classifier

def weights_init_classifier(m):
    classname = m.__class__.__name__
    if classname.find('Linear') != -1:
        nn.init.normal_(m.weight, std=0.001)
        if m.bias:
            nn.init.constant_(m.bias, 0.0)

self.classifier = nn.Linear(self.in_planes, self.num_classes, bias=False)
self.classifier.apply(weights_init_classifier)

其实就是一个全连接层,输出神经元个数显然就是类别数了,在行人重识别里,所谓的类别数就是行人个数

3.5 网络输出

最后网络返回的是classifier分类出的结果cls_score和没经过bottleneck的global_feat

四、损失函数

代码的默认配置里,只有triplet loss没有center loss(为啥咧?咱也不知道?),不过既然论文提出了center loss,还是看既有triplet loss 也有center loss的情况下的损失函数代码。另外,默认配置下是有Label Smooth的

def make_loss_with_center(cfg, num_classes):    # modified by gu
  ...
    elif cfg.MODEL.METRIC_LOSS_TYPE == 'triplet_center':
        triplet = TripletLoss(cfg.SOLVER.MARGIN)  # triplet loss
        center_criterion = CenterLoss(num_classes=num_classes, feat_dim=feat_dim, use_gpu=True)  # center loss

    if cfg.MODEL.IF_LABELSMOOTH == 'on':
        xent = CrossEntropyLabelSmooth(num_classes=num_classes)     # new add by luo
        print("label smooth on, numclasses:", num_classes)

    def loss_func(score, feat, target):
      ...

        elif cfg.MODEL.METRIC_LOSS_TYPE == 'triplet_center':
            if cfg.MODEL.IF_LABELSMOOTH == 'on':
                return xent(score, target) + \
                        triplet(feat, target)[0] + \
                        cfg.SOLVER.CENTER_LOSS_WEIGHT * center_criterion(feat, target)
            

     
    return loss_func, center_criterion

简单来说,就是triplet loss、center loss、CrossEntropyLabelSmooth三种Loss的和,cfg.SOLVER.CENTER_LOSS_WEIGHT用于调节center loss占的比例。

4.1 TripletLoss

论文中对triple loss的描述如下:


屏幕快照 2019-10-03 下午1.48.18.png

TripletLoss代码如下,调用是是运行call函数:

class TripletLoss(object):

    def __init__(self, margin=None):
        self.margin = margin
        if margin is not None:
            self.ranking_loss = nn.MarginRankingLoss(margin=margin)
        else:
            self.ranking_loss = nn.SoftMarginLoss()

    def __call__(self, global_feat, labels, normalize_feature=False):
        if normalize_feature:
            global_feat = normalize(global_feat, axis=-1)
        dist_mat = euclidean_dist(global_feat, global_feat)
        dist_ap, dist_an = hard_example_mining(
            dist_mat, labels)
        y = dist_an.new().resize_as_(dist_an).fill_(1)
        if self.margin is not None:
            loss = self.ranking_loss(dist_an, dist_ap, y)
        else:
            loss = self.ranking_loss(dist_an - dist_ap, y)
        return loss, dist_ap, dist_an

参数:
global_feat:参见本文3.2节
labels:真实标签,如为第i类则为i,尺寸为[batch_size]
默认情况下不进行normalize,那么流程如下:
1、计算global_feat和global_feat的欧氏距离。
euclidean_dist函数代码如下:

def euclidean_dist(x, y):
    """
    Args:
      x: pytorch Variable, with shape [m, d]
      y: pytorch Variable, with shape [n, d]
    Returns:
      dist: pytorch Variable, with shape [m, n]
    """
    m, n = x.size(0), y.size(0)
    xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n)
    yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t()
    dist = xx + yy
    dist.addmm_(1, -2, x, y.t())
    dist = dist.clamp(min=1e-12).sqrt()  # for numerical stability
    return dist

对x每行求平方和,再将[m,1]的平方和扩展到[m,n],得到xx,对y进行同样操作得到yy。
dist = sqrt(max(1 * (xx + yy) + (-2) * (x * yT),0))
有点像(x - y )^2 = x^2 + y^2 - 2xy
2、得到dist_mat即距离矩阵后,对dist_mat和label计算hard_example_mining。
hard_example_mining代码如下:

def hard_example_mining(dist_mat, labels, return_inds=False):
    """For each anchor, find the hardest positive and negative sample.
    Args:
      dist_mat: pytorch Variable, pair wise distance between samples, shape [N, N]
      labels: pytorch LongTensor, with shape [N]
      return_inds: whether to return the indices. Save time if `False`(?)
    Returns:
      dist_ap: pytorch Variable, distance(anchor, positive); shape [N]
      dist_an: pytorch Variable, distance(anchor, negative); shape [N]
      p_inds: pytorch LongTensor, with shape [N];
        indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1
      n_inds: pytorch LongTensor, with shape [N];
        indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1
    NOTE: Only consider the case in which all labels have same num of samples,
      thus we can cope with all anchors in parallel.
    """

    assert len(dist_mat.size()) == 2
    assert dist_mat.size(0) == dist_mat.size(1)
    N = dist_mat.size(0)

    # shape [N, N]
    is_pos = labels.expand(N, N).eq(labels.expand(N, N).t())
    is_neg = labels.expand(N, N).ne(labels.expand(N, N).t())

    # `dist_ap` means distance(anchor, positive)
    # both `dist_ap` and `relative_p_inds` with shape [N, 1]
    dist_ap, relative_p_inds = torch.max(
        dist_mat[is_pos].contiguous().view(N, -1), 1, keepdim=True)
    # `dist_an` means distance(anchor, negative)
    # both `dist_an` and `relative_n_inds` with shape [N, 1]
    dist_an, relative_n_inds = torch.min(
        dist_mat[is_neg].contiguous().view(N, -1), 1, keepdim=True)
    # shape [N]
    dist_ap = dist_ap.squeeze(1)
    dist_an = dist_an.squeeze(1)

    if return_inds:
        # shape [N, N]
        ind = (labels.new().resize_as_(labels)
               .copy_(torch.arange(0, N).long())
               .unsqueeze(0).expand(N, N))
        # shape [N, 1]
        p_inds = torch.gather(
            ind[is_pos].contiguous().view(N, -1), 1, relative_p_inds.data)
        n_inds = torch.gather(
            ind[is_neg].contiguous().view(N, -1), 1, relative_n_inds.data)
        # shape [N]
        p_inds = p_inds.squeeze(1)
        n_inds = n_inds.squeeze(1)
        return dist_ap, dist_an, p_inds, n_inds

    return dist_ap, dist_an

根据真实标签分出正样本和负样本(标签相同的两个样本为正样本对,不同的为负样本对),把正样本对的欧氏距离和负样本对的欧氏距离分开返回。
3、计算ranking loss
y = dist_an(负样本欧氏距离)同样的尺寸的全是1的张量
默认下,ranking loss有margin,使用pytorch的nn.MarginRankingLoss来计算:

self.ranking_loss = nn.MarginRankingLoss(margin=margin)
loss = self.ranking_loss(dist_an, dist_ap, y)

https://www.jianshu.com/p/579a0f4cbf24
中总结了pytorch中实现的一些loss,MarginRankingLoss也在其中。

4.2 center loss

论文中,center loss公式为:


屏幕快照 2019-10-03 下午4.26.13.png

代码中,center loss为一个层,其实现如下:

class CenterLoss(nn.Module):
    """
    Args:
        num_classes (int): number of classes.
        feat_dim (int): feature dimension.
    """
    def __init__(self, num_classes=751, feat_dim=2048, use_gpu=True):
        ...
        if self.use_gpu:
            self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
        else:
            self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim))
    def forward(self, x, labels):
        """
        Args:
            x: feature matrix with shape (batch_size, feat_dim).
            labels: ground truth labels with shape (num_classes).
        """
      ...
        batch_size = x.size(0)
        distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
                  torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
        distmat.addmm_(1, -2, x, self.centers.t())

        classes = torch.arange(self.num_classes).long()
        if self.use_gpu: classes = classes.cuda()
        labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)
        mask = labels.eq(classes.expand(batch_size, self.num_classes))

        dist = distmat * mask.float()
        loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size
        return loss

centers,即为num_class(类别数) * feat_dim(特征向量维度)的正态分布的随机数张量。dismat为x(训练中即为global_feat,参见本文3.5节)和centers的欧氏距离。
labels为真实标签,这里真实标签是1、3、4、5这种,不是一个向量,mask为每个标签的类别向量张量,即一行为一个[0,0,...,1,....]这样的类别向量。
dist = dismat * mask.float,也就是保留下对应类的dismat中每行对应类别列,其他为0
最后loss = dist中大于0的元素的和 / batch_size

4.3 CrossEntropyLabelSmooth

这个loss就是重识别的loss,即论文中的Lid,行人是否识别对的loss。论文中对该loss的描述如下:


屏幕快照 2019-10-03 下午5.44.56.png

代码如下:

class CrossEntropyLabelSmooth(nn.Module):
    """Cross entropy loss with label smoothing regularizer.

    Reference:
    Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
    Equation: y = (1 - epsilon) * y + epsilon / K.

    Args:
        num_classes (int): number of classes.
        epsilon (float): weight.
    """
    def __init__(self, num_classes, epsilon=0.1, use_gpu=True):
        super(CrossEntropyLabelSmooth, self).__init__()
        self.num_classes = num_classes
        self.epsilon = epsilon
        self.use_gpu = use_gpu
        self.logsoftmax = nn.LogSoftmax(dim=1)

    def forward(self, inputs, targets):
        """
        Args:
            inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
            targets: ground truth labels with shape (num_classes)
        """
        log_probs = self.logsoftmax(inputs)
        targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1)
        if self.use_gpu: targets = targets.cuda()
        targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
        loss = (- targets * log_probs).mean(0).sum()
        return loss

其实就是对特征做logsoftmax,target为对应论文中的q,两个相乘得到的张量中的元素的和就是重识别的loss Lid。

五、optimizer

优化器默认是SGD,这个参数的设置、学习率的调整等等就不详述了,可以参考论文。有center loss的优化器初始化代码如下:

def make_optimizer_with_center(cfg, model, center_criterion):
    params = []
    for key, value in model.named_parameters():
        if not value.requires_grad:
            continue
        lr = cfg.SOLVER.BASE_LR
        weight_decay = cfg.SOLVER.WEIGHT_DECAY
        if "bias" in key:
            lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR
            weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS
        params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]
    if cfg.SOLVER.OPTIMIZER_NAME == 'SGD':
        optimizer = getattr(torch.optim, cfg.SOLVER.OPTIMIZER_NAME)(params, momentum=cfg.SOLVER.MOMENTUM)
    else:
        optimizer = getattr(torch.optim, cfg.SOLVER.OPTIMIZER_NAME)(params)
    optimizer_center = torch.optim.SGD(center_criterion.parameters(), lr=cfg.SOLVER.CENTER_LR)
    return optimizer, optimizer_center

六、训练

网络结构、损失函数、优化器这几个要素知道之后,基本就能明白网络的训练逻辑了,具体的训练无非就是先前向计算再后向计算,贴一段相关代码:

 def _update(engine, batch):
        model.train()
        optimizer.zero_grad()
        optimizer_center.zero_grad()
        img, target = batch
        img = img.to(device) if torch.cuda.device_count() >= 1 else img
        target = target.to(device) if torch.cuda.device_count() >= 1 else target
        score, feat = model(img)
        loss = loss_fn(score, feat, target)
        # print("Total loss is {}, center loss is {}".format(loss, center_criterion(feat, target)))
        loss.backward()
        optimizer.step()
        for param in center_criterion.parameters():
            param.grad.data *= (1. / cetner_loss_weight)
        optimizer_center.step()

        # compute acc
        acc = (score.max(1)[1] == target).float().mean()
        return loss.item(), acc.item()

文中训练用到了ignite的Engine,具体还是得看代码,大概是有涉及到多线程,事件触发。比如:

 trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpointer, {'model': model,
                                                                     'optimizer': optimizer,
                                                                     'center_param': center_criterion,
                                                                     'optimizer_center': optimizer_center})

这个event_handler笔者才想是类似安卓中的handler,是一种多线程通信机制。

你可能感兴趣的:(reid-strong-baseline代码阅读笔记)