- 大白话解释深度学习中多尺度特征融合及其意义
来自宇宙的曹先生
深度学习人工智能
想象一下,你正在看一幅城市街道的照片。在这张照片中,你可能会看到:远处的小汽车,它们在图像中看起来很小。近处的大巴士,它们在图像中看起来很大。还有一些行人,他们可能在不同的距离上,大小各异。假设你想训练一个计算机程序来识别和分割这些不同的物体(汽车、巴士、行人)。如果这个程序只能在一个固定的尺度上“看”图像,比如说只能处理大物体,它可能会错过那些远处的小汽车,因为这些小汽车在图像中占据的像素很少。
- SpringBoot多数据源动态切换方案:AbstractRoutingDataSource详解
fanxbl957
Webspringboot后端java
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot多数据源动态切换
- 深入解读MaaS技术架构:从模型服务到智能部署的全流程分析
Cc不爱吃洋葱
架构人工智能大语言模型大模型智能部署MaaS技术架构LLM
随着人工智能(AI)的迅速发展,MaaS(ModelasaService,模型即服务)技术架构应运而生。它通过将复杂的AI模型封装为标准化服务,降低了模型的开发和部署门槛,帮助企业快速实现业务场景的智能化升级。本文将深入解析MaaS技术架构,详细阐述其各个组成部分以及如何在实际应用中高效发挥其功能。一、使用方层:从应用接入到业务赋能MaaS技术架构的顶层是使用方层,它主要面向第三方应用,是企业与M
- 想要了解大模型,看懂这一篇就够了!大模型工作流程及核心参数介绍!
Gq.xxu
qwen3vllmtransforms大语言模型部署深度学习人工智能
若想深入探究大模型核心参数的效果与作用,就务必先弄清大模型的工作流程,明确核心参数在流程各阶段的效能与功能,知晓其具体含义。一,大模型的工作流程大模型运行时的工作原理可以概括为输入处理→特征提取→模型推理→结果生成四个核心阶段,整个过程融合了深度学习架构、自然语言处理技术以及分布式计算能力。从用户输入到大模型输出,整个工作的处理流程如下:输入文本→分词→嵌入+位置编码→Transformer多层处
- 深度学习-Tensor
Tensor张量:与numpy中的ndarray不同之处:tensor可以在GPU或其他专用硬件上运行,以加速计算。一、Tensor初始化1.直接从数据中创建data=[[1,2],[3,4]]x_data=torch.tensor(data)2.从numpy数组创建np_array=np.array(data)x_np=torch.from_numpy(np_array)3.从另一个Tensor
- 基于存算一体架构的实时深度学习推理优化
瑕疵
热点资讯架构深度学习人工智能
博客主页:瑕疵的CSDN主页Gitee主页:瑕疵的gitee主页⏩文章专栏:《热点资讯》基于存算一体架构的实时深度学习推理优化基于存算一体架构的实时深度学习推理优化基于存算一体架构的实时深度学习推理优化引言存算一体架构的核心优势1.能效比突破2.实时性保障架构设计与实现技术1.存储单元创新2.硬件加速器设计3.电路级优化深度学习推理优化策略1.模型压缩技术2.硬件-软件协同优化3.运行时调度典型应
- 人工智能LLM | 基础配置 | 通过环境变量配置API-KEY 一文通教程
H-大叔
人工智能大模型实战与教程人工智能
在实战开发大语言模型的过程中,经常会遇到各种API-KEY的配置问题,例如GPTOpenAIKEY的配置,而且目前大部分都要求将其配置在环境变量中,下面将会讲解如何在Linux、macOS、Windows中配置,本文一文通教程。您可以使用配置环境变量的方法,避免在调用各种SDK时显式地配置API-KEY,从而降低泄漏风险。环境变量是操作系统中用于存储有关系统环境的信息的变量。您可以通过环境变量来配
- 【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
G皮T
#大语言模型人工智能LLM大语言模型chatgptdeepseekDeepSeek-R1DeepSeek-V3
ChatGPT、DeepSeek-R1、DeepSeek-V3辨析1.ChatGPT对比DeepSeek1.1技术相似点1.2主要差异1.3关键区别1.4如何选择1.5总结2.DeepSeek-R1对比DeepSeek-V32.1DeepSeek-R12.2DeepSeek-V32.3核心区别总结2.4如何选择3.R1和V3有什么含义3.1DeepSeekR1的"R"3.2DeepSeekV3的"
- 在学校研究学习的偏算法,秋招投递开发岗位还有希望吗
程序员
前言Thelasttime,Ihavelearned这是星球同学,在周五晚上答疑聊天的时候对我的提问:如果简历上的项目偏算法,但是自学了一些操作系统和计网的知识,秋招的时候投递偏开发的岗位有希望吗?简历上是否也要加上相关项目?估计也是很多朋友的疑问,毕竟很多同学读研,有些老师疯狂push,要成果,发论文。要想尽快发论文,那只能“研究”人工智能、算法的一些东西了。但是众所周知,算法要求很高,不仅要求
- 【AI论文】基于图像思维的多模态推理:理论基础、方法及未来前沿
东临碣石82
人工智能
摘要:近期,文本思维链(Chain-of-Thought,CoT)显著推动了多模态推理的进展。在这一范式下,模型在语言层面进行推理。然而,这种以文本为中心的方法将视觉信息视为静态的初始语境,从而在丰富的感知数据与离散的符号思维之间造成了根本性的“语义鸿沟”。人类认知往往超越语言的局限,将视觉作为动态的心理草图板加以利用。如今,人工智能领域也正经历着类似的演变,标志着从仅能对图像进行思考的模型向真正
- 【深度学习新浪潮】什么是上下文长度?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能LLM语言模型大模型模型优化上下文长度
大型语言模型(LLM)的上下文长度是指模型在处理当前输入时能够有效利用的历史文本长度,通常以token(如单词、子词或标点)为单位衡量。例如,GPT-4支持128Ktoken的上下文,而Llama4Scout甚至达到了10Mtoken的惊人规模。这一指标直接影响模型在长文档理解、多轮对话等复杂任务中的表现。一、上下文长度的合理范围上下文长度的选择需结合具体应用场景:日常对话:通常需要8K–32Kt
- Manus AI与多语言手写识别
tonngw
人工智能
技术文章大纲:ManusAI与多语言手写识别引言手写识别技术的发展背景与市场需求ManusAI的定位与核心技术优势多语言场景下的挑战与机遇ManusAI的核心技术架构基于深度学习的端到端手写识别模型多模态数据融合(笔迹压力、书写轨迹等)自适应语言模型与字符集扩展机制多语言手写识别的关键技术非拉丁语系(中文、阿拉伯语等)的笔迹特征提取小样本语言数据的迁移学习策略上下文感知与语法纠错在低资源语言中的应
- DeepSeek 帮助自己的工作
引言简述人工智能助手在职场中的普及趋势DeepSeek作为智能创作助手的核心功能概述DeepSeek的核心能力信息检索与整合:基于用户意图精准搜索并生成答案多场景应用:技术文档撰写、数据分析、代码生成等交互优化:遵循用户指定的格式与内容规范职场应用场景与实操案例技术文档撰写自动生成API文档框架根据需求补充技术细节示例代码块与公式的规范化输出数据分析支持快速检索行业数据并生成可视化建议数学建模中的
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 人工智能-基础篇-23-智能体Agent到底是什么?怎么理解?(智能体=看+想+做)
weisian151
人工智能人工智能
1、智能体是什么?想象你有一个超级聪明的小助手,它能:自己看环境(比如看到天气、听到声音、读到数据);自己做决定(比如下雨了要关窗,电量低要去充电);自己动手干活(比如帮你订外卖、打扫房间、开车);越用越聪明(比如记住你的习惯,下次不用你提醒)。这个“小助手”就是智能体(Agent)——它是一个能自主感知、思考、行动并学习的系统,可以是软件(比如手机里的AI助手)、硬件(比如机器人),或者软硬结合
- 【AI大模型】神经网络反向传播:核心原理与完整实现
我爱一条柴ya
学习AI记录人工智能神经网络深度学习aiAI编程
一、反向传播的本质与意义反向传播(Backpropagation)是神经网络训练的核心算法,通过链式法则高效计算损失函数对网络参数的梯度,实现神经网络的优化学习。它的出现解决了神经网络训练中的关键瓶颈,使深度学习成为可能。为什么需要反向传播?参数规模爆炸:现代神经网络有数百万至数十亿参数手动计算不可行:复杂网络梯度计算量指数级增长高效优化需求:梯度下降算法需要精确的梯度计算二、前向传播与反向传播对
- 基于YOLOv8深度学习架构的智能农业巡检小车系统—面向农作物与杂草实时精准识别的创新实践
1.科技赋能智慧农业随着全球人口的持续增长和农业生产面临的挑战,精准农业已成为现代农业发展的必然趋势。其中,农作物与杂草的精准识别是实现自动化、智能化管理的关键一环。传统的人工除草效率低下,化学除草则可能带来环境问题。因此,开发高效、精准、环保的智能农业系统迫在眉睫。本文将深入探讨一款基于深度学习和智能硬件集成的农田作业智能小车系统。我们将重点聚焦于其硬件系统设计、软件系统架构、核心算法创新(特别
- 多角色AI Agent:基于LLM的虚拟角色扮演系统
AI天才研究院
AI人工智能与大数据人工智能ai
多角色AIAgent:基于LLM的虚拟角色扮演系统关键词多角色AIAgentLargeLanguageModel(LLM)虚拟角色扮演系统人工智能自然语言处理程序设计摘要本文旨在探讨多角色AIAgent的基础知识以及其如何在虚拟角色扮演系统中发挥作用。我们将首先介绍多角色AIAgent的概念、历史背景和基本原理。随后,我们将深入探讨LLM(大语言模型)在虚拟角色扮演系统中的应用,包括其工作原理、核
- 【算法】解数独:C++ 实现与策略探讨
master_chenchengg
算法提升算法java开发语言
【算法】解数独:C++实现与策略探讨一、引言:C++算法技术的魔力与解数独的智慧二、技术概述:数独求解的艺术定义与技术框架核心特性和优势代码示例:基础回溯解法三、技术细节:解数独的逻辑与挑战原理解析难点分析四、实战应用:从游戏到人工智能应用场景解决方案展示五、优化与改进潜在问题改进建议六、常见问题与解决方案七、总结与展望一、引言:C++算法技术的魔力与解数独的智慧在算法领域,C++凭借其高效、灵活
- FastMCP:用于构建MCP服务器的开源Python框架
NetX行者
AI编程服务器开源python
在人工智能领域,模型上下文协议(ModelContextProtocol,简称MCP)作为一种标准化的协议,为大型语言模型(LLM)提供了丰富的上下文和工具支持。而FastMCP作为构建MCP服务器和客户端的Python框架,以其简洁的API设计、高效的开发体验以及强大的扩展能力,正逐渐成为开发者们的首选工具。一、FastMCP简介FastMCP是一个用于构建MCP服务器和客户端的Python框架
- Ubuntu下安装多版本CUDA及灵活切换全攻略
芯作者
D2:ubuntulinuxubuntu
——释放深度学习潜能,告别版本依赖的烦恼!**为什么需要多版本CUDA?在深度学习、科学计算等领域,不同框架(TensorFlow、PyTorch等)对CUDA版本的要求各异。同时升级框架或维护旧项目时,版本冲突频发。多版本CUDA共存+一键切换是高效开发的刚需!本文将手把手教你实现这一能力,并分享独创的“动态软链接+环境隔离”技巧,让版本管理行云流水!环境准备硬件要求NVIDIA显卡(支持CUD
- Python在人工智能领域的实际应用:示例代码解析
辣条yyds
pythonpython人工智能开发语言
摘要:本文将通过几个典型的人工智能应用场景,展示Python在图像识别、自然语言处理、推荐系统等方面的高级用法。通过示例代码,带大家深入理解Python在人工智能领域的实际应用。正文:Python作为一门流行的编程语言,凭借其简洁的语法、丰富的库和框架,成为了人工智能(AI)领域的主流开发语言。下面,我们将通过几个示例,探讨Python在人工智能方向的实际应用。示例一:图像识别-使用OpenCV进
- Tansformer的Multi-Head Attention组件
数字化与智能化
大模型基础Transformer框架transformer多头注意力机制
一、Transformer的注意力机制Transformer的注意力机制是对传统序列建模方法的颠覆性创新。它通过全局并行的关联计算解决了RNN的效率与长距离依赖瓶颈,通过动态权重和多头设计增强了模型对复杂信息的捕捉能力,最终成为现代人工智能的核心技术基石。其意义不仅在于提升了模型性能,更在于提供了一种“计算关联”的通用思路,推动了人工智能向更高效、更通用的方向发展。在Transformer之前,循
- 深入详解 AI 与深度学习:从零开始掌握 BERT 模型架构
拉不拉斯AICoding
技术探索人工智能深度学习bert
深入详解AI与深度学习:从零开始掌握BERT模型架构引言在自然语言处理(NLP)领域,BERT(BidirectionalEncoderRepresentationsfromTransformers)是近年来最具影响力的模型之一。它通过双向上下文理解彻底改变了NLP任务的处理方式。本文将从基础概念到核心原理、应用场景和实践技巧,深入浅出地讲解BERT,帮助初学者快速掌握这一技术。一、BERT的核心
- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- 【人工智能】Maas(模型即服务)(Model as a Service)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。
本本本添哥
A-AIGC人工智能大模型人工智能云计算
ModelasaService(模型即服务,MaaS)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。MaaS通过云原生架构和标准化服务,正在重塑AI技术的开发和消费方式,推动人工智能从“技术专有”向“普惠工具”转变。以下是其核心要点:1.定义与核心理念MaaS将大模型(如GPT-3、多模态模型等)封装为标准化服务,用户
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- 实例化 OCR 对象的 predict() 方法介绍
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- 提示词工程在实体关系抽取中的创新
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
1.5概念结构与核心要素组成在深入探讨提示词工程在实体关系抽取中的应用之前,我们需要对其概念结构与核心要素组成有一个清晰的理解。这一部分将介绍提示词工程的基本框架,以及实体关系抽取的关键技术。提示词工程的基本框架提示词工程(PromptEngineering)是指利用人工智能技术和自然语言处理方法,设计并优化用于训练语言模型的输入提示(prompt),以达到特定任务目标的过程。其核心框架包括以下几
- 动手学深度学习13.7. 单发多框检测(SSD)-笔记&练习(PyTorch)
scdifsn
深度学习笔记pytorchssd单发多框检测(SSD)目标检测mAP评价
以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。本节课程地址:45SSD实现【动手学深度学习v2】_哔哩哔哩_bilibili本节教材地址:13.7.单发多框检测(SSD)—动手学深度学习2.0.0documentation本节开源代码:…>d2l-zh>pytorch>chapter_optimization>ssd.ipynb单发多框
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo