源自课程:《PyTorch深度学习实践》完结合集
Chapter11 卷积神经网络(高级篇)
"""
Advanced CNN:inception
"""
import torch
import torch.nn.functional as F
from torch.optim import optimizer
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
# 构建其它网络时,主要就是网络模块和网络结构发生变化,后面的训练 测试大体一致
# Inception常用模块搭建
class InceptionA(torch.nn.Module):
def __init__(self, in_channels):
super(InceptionA, self).__init__()
# 均值池化分支,卷积使用如下方式,均值池化使用F函数
self.aver_pooling_11 = torch.nn.Conv2d(in_channels, 24, kernel_size=1)
# 1×1卷积分支
self.branch_11 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
# 5×5卷积分支
self.branch_55_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch_55_2 = torch.nn.Conv2d(16, 24, kernel_size=5, stride=1, padding=2)
# 3×3卷积分支
self.branch_33_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch_33_2 = torch.nn.Conv2d(16, 24, kernel_size=3, stride=1, padding=1)
self.branch_33_3 = torch.nn.Conv2d(24, 24, kernel_size=3, stride=1, padding=1)
def forward(self, x):
# 均值池化分支
branch_aver_pooling = self.aver_pooling_11(x)
branch_aver_pooling = F.avg_pool2d(branch_aver_pooling, kernel_size=3, stride=1, padding=1)
# 1×1卷积分支
branch_11 = self.branch_11(x)
# 5×5卷积分支
branch_55 = self.branch_55_1(x)
branch_55 = self.branch_55_2(branch_55)
# 3×3卷积分支
branch_33 = self.branch_33_1(x)
branch_33 = self.branch_33_2(branch_33)
branch_33 = self.branch_33_3(branch_33)
# 按照通道维度进行拼接
output = [branch_aver_pooling, branch_11, branch_55, branch_33]
return torch.cat(output, dim=1)
# inception网络具体的网络结构搭建
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5)
self.incep1 = InceptionA(10)
self.incep2 = InceptionA(20)
self.mp = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(1408, 10)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.mp(self.conv1(x)))
x = self.incep1(x)
x = F.relu(self.mp(self.conv2(x)))
x = self.incep2(x)
x = x.view(in_size, -1)
x = self.fc(x)
return x
# 实例化模型,如果需要迁移到GPU上,则要使用to(device)语句
# 一共要将"模型 训练数据 测试数据"转换到GPU上
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# 设置batch_size大小,以及使用transform对样本数据进行标准化
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载下载公开数据集的训练、测试数据(主要区别是Train=True/False)
# 注意:创建Dataset类的子类用于读取数据,而datasets则是加载下载公开数据集
train_dataset = datasets.MNIST(root="New_program//MNIST",
train=True,
download=True,
transform=transform)
# 训练集中的数据一般shuffle=True,而测试集中为False
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size,
num_workers=2)
test_dataset = datasets.MNIST(root="New_program//MNIST",
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size,
num_workers=2)
# 构建损失函数和优化器,此处使用的是交叉熵损失,因此网络最后一层无需激活函数
criterion = torch.nn.CrossEntropyLoss()
# SGD带冲量,旨在帮助避免陷入局部最优点
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 开始进行迭代训练
def train(epoch):
running_loss = 0
for batch_idx, data in enumerate(train_loader, 0):
# 正向传播、计算损失
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
outputs = model.forward(inputs)
loss = criterion(outputs, target)
# 梯度清零、反向传播、参数更新
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss = running_loss + loss.item()
# 以300次作为一个iteration
if batch_idx % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 100))
running_loss = 0.0
# 进行模型测试
def test():
correct = 0
total = 0
# 测试时无需对梯度进行跟踪
with torch.no_grad():
# 测试时不需要batch_idx,单个样本测试即可
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %.3f %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()