源自课程:《PyTorch深度学习实践》完结合集
Chapter11 卷积神经网络(高级篇)
"""
Advanced CNN:resnet
"""
import torch
import torch.nn.functional as F
from torch.optim import optimizer
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
# resnet常用模块搭建
class ResnetBlock(torch.nn.Module):
def __init__(self, channels):
super(ResnetBlock, self).__init__()
self.channels = channels
# 因为resnet要求通道数一致,因此只有channel即可
self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x):
# 一次卷积没有用,卷积的本质还是线性运算
# 两次相同的卷积,第一次结束后激活
y = F.relu(self.conv1(x))
y = self.conv2(x)
return F.relu(x + y)
# resnet网络具体的网络结构搭建
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=5)
self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=5)
self.resnb1 = ResnetBlock(16)
self.resnb2 = ResnetBlock(32)
self.mp = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(512, 10)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.mp(self.conv1(x)))
x = self.resnb1(x)
x = F.relu(self.mp(self.conv2(x)))
x = self.resnb2(x)
x = x.view(in_size, -1)
x = self.fc(x)
return x
# 实例化模型,如果需要迁移到GPU上,则要使用to(device)语句
# 一共要将"模型 训练数据 测试数据"转换到GPU上
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# 设置batch_size大小,以及使用transform对样本数据进行标准化
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载下载公开数据集的训练、测试数据(主要区别是Train=True/False)
# 注意:创建Dataset类的子类用于读取数据,而datasets则是加载下载公开数据集
train_dataset = datasets.MNIST(root="New_program//MNIST",
train=True,
download=True,
transform=transform)
# 训练集中的数据一般shuffle=True,而测试集中为False
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size,
num_workers=2)
test_dataset = datasets.MNIST(root="New_program//MNIST",
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size,
num_workers=2)
# 构建损失函数和优化器,此处使用的是交叉熵损失,因此网络最后一层无需激活函数
criterion = torch.nn.CrossEntropyLoss()
# SGD带冲量,旨在帮助避免陷入局部最优点
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 开始进行迭代训练
def train(epoch):
running_loss = 0
for batch_idx, data in enumerate(train_loader, 0):
# 正向传播、计算损失
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
outputs = model.forward(inputs)
loss = criterion(outputs, target)
# 梯度清零、反向传播、参数更新
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss = running_loss + loss.item()
# 以100次作为一个iteration
if batch_idx % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 100))
running_loss = 0.0
# 进行模型测试
def test():
correct = 0
total = 0
# 测试时无需对梯度进行跟踪
with torch.no_grad():
# 测试时不需要batch_idx,单个样本测试即可
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %.3f %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()