AI人工智能实践技术全面指南:从基础知识到前沿应用

人工智能(Artificial Intelligence),英文缩写为AI。 [24] 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。
人工智能是智能学科重要的组成部分,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

了解全文点击: 《AI人工智能实践技术全面指南:从基础知识到前沿应用》

文章目录

    • 一、​信息检索与常用科研工具
    • 二、科技论文写作与技巧
    • 三、​前向型神经网络
    • 四、支持向量机、决策树与随机森林
    • 五、群优化算法
    • 六、变量降维特征选择
    • 七、卷积神经网络
    • 八、网络优化调参技巧
    • 九、迁移学习
    • 十、循环神经网络 长短时记忆神经网络 时间卷积网络
    • 十一、生成式对抗网络
    • 十二、YOLO目标检测算法
    • 十三、自编码器

一、​信息检索与常用科研工具

1、如何无障碍地访问Google、YouTube等网站?(谷歌访问助手、VPN等)
2、如何查阅文献资料?怎样能够保证对最新论文的追踪?
3、Google Scholar、ResearchGate的使用方法
4、应该去哪些地方查找与论文配套的数据和代码?
5、文献管理工具的使用(Endnote、Zotero等)
6、当代码出现错误时,应该如何高效率解决?

二、科技论文写作与技巧

1、科技论文结构解析(Title、Abstract、Keywords、Introduction、Materials & Methods、Results、Discussion、Conclusion、References)
2、如何高效率撰写专业论文?
3、SCI不同分区的论文差别在哪些地方?你知道你的论文为什么显得很单薄吗?
4、从审稿人的角度看,SCI期刊论文需要具备哪些要素?(审稿人关注的点有哪些?如何回应审稿人提出的意见?)
5、如何提炼与挖掘创新点?(如果在算法层面上难以做出原创性的工作,如何结合自己的实际问题提炼与挖掘创新点?)

三、​前向型神经网络

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?BP神经网络建模的本质是什么?)
2、BP神经网络的Python代码实现(怎样划分训练集和测试集?为什么需要归一化?归一化是必须的吗?什么是梯度爆炸与梯度消失?)
3、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)
4、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)
5、案例演示一:近红外光谱汽油辛烷值预测(回归拟合)
6、案例演示二:MNIST手写数字识别(分类识别)

四、支持向量机、决策树与随机森林

1、SVM的基本原理(SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)
2、SVM扩展知识(如何解决多分类问题?SVM除了建模型之外,还可以帮助我们做哪些事情?)
3、决策树的基本原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?
4、随机森林的基本原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)怎样可视化、解读随机森林的结果?
5、SVM、决策树、随机森林的Python代码实现
6、案例一:乳腺癌肿瘤诊断
7、案例二:混凝土强度预测

五、群优化算法

1、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?目前国内外的研究热点在哪些方面?)
2、遗传算法的Python代码实现
3、案例一:一元函数的寻优计算(极大值与极小值)
4、案例二:离散变量的寻优计算(基于遗传算法的特征变量筛选)

六、变量降维特征选择

1、变量降维与特征选择在概念上的区分
2、主成分分析(PCA)、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)
3、常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)
4、案例实践:变量降维与特征选择的Python代码实现

七、卷积神经网络

1、深度学习与传统机器学习的区别与联系(隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)
2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)
3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet 等经典深度神经网络的区别与联系
4、Pytorch深度学习框架简介、PyTorch的安装与环境配置
5、PyTorch常用工具包及API简介:张量Tensor的定义、属性、创建、运算、索引与切片、torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader)
6、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet 等)
7、案例:
(1)CNN 预训练模型实现物体识别
(2)利用卷积神经网络抽取抽象特征
(3)自定义卷积神经网络拓扑结构
(4)1D CNN 模型解决回归拟合预测问题

八、网络优化调参技巧

1、网络拓扑结构优化
2、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、 Adam 等)
3、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)
4、案例讲解:卷积神经网络模型优化

九、迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)
2、基于深度神经网络模型的迁移学习算法
3、案例:猫狗大战(Dogs vs. Cats)

十、循环神经网络 长短时记忆神经网络 时间卷积网络

1、循环神经网络(RNN)的基本原理
2、长短时记忆神经网络(LSTM)的基本原理
3、时间卷积网络(TCN)的基本原理
4、RNN、LSTM与TCN的区别与联系
5、案例
1)时间序列预测:新冠肺炎疫情预测
2)序列-序列分类:人体动作识别

十一、生成式对抗网络

1、生成式对抗网络 GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?GAN 给我们带来的启示)
2、GAN 的基本原理
3、案例:GAN 的 Python 代码实现(向日葵花图像的自动生成)

十二、YOLO目标检测算法

1、什么是目标检测?目标检测与目标识别的区别与联系
2、YOLO 模型的工作原理
3、从 YOLO v1 到 v5 的进化之路
4、案例
(1)使用预训练模型实现图像、视频等实时目标检测
(2)训练自己的数据集:新冠疫情佩戴口罩识别

十三、自编码器

1、自编码器的组成及基本工作原理
2、自编码器的变种(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)及其工作原理
3、案例:基于自编码器的图像分类

你可能感兴趣的:(机器学习,python,人工智能,机器学习,python,YOLO,SCI,开发语言,自编码器)