【源码解析】Spring Cloud Gateway使用RedisRateLimiter实现限流

实现方案

在gateway项目中引入依赖

  <dependency>
    <groupId>org.springframework.cloudgroupId>
    <artifactId>spring-cloud-starter-gatewayartifactId>
dependency>
 
<dependency>
    <groupId>org.springframework.bootgroupId>
    <artifactId>spring-boot-starter-data-redis-reactiveartifactId>
dependency>

实现KeyResolver接口

	@Bean
	public KeyResolver userKeyResolver() {
		return exchange -> Mono.just(
				exchange.getRequest().getQueryParams().getFirst("userId")
				//exchange.getRequest().getHeaders().getFirst("X-Forwarded-For") 基于请求ip的限流
		);
	}

配置文件配置

spring:
  cloud:
    gateway:
      routes:
        - id: order_route
          uri: lb://app-cls
#          uri: http://localhost:28080
          order: 1
          predicates:
            - Path=/cls/**
          filters:
            - StripPrefix=1
            - name: RequestRateLimiter
              args:
                key-resolver: '#{@userKeyResolver}'
                redis-rate-limiter.replenishRate: 1
                redis-rate-limiter.burstCapacity: 2

源码分析

GatewayRedisAutoConfiguration会判断是否存在ReactiveRedisTemplate,如果存在,加载META-INF/scripts/request_rate_limiter.lua的redis限流脚本,往容器中注入RedisRateLimiter

@Configuration
@AutoConfigureAfter(RedisReactiveAutoConfiguration.class)
@AutoConfigureBefore(GatewayAutoConfiguration.class)
@ConditionalOnBean(ReactiveRedisTemplate.class)
@ConditionalOnClass({RedisTemplate.class, DispatcherHandler.class})
class GatewayRedisAutoConfiguration {

	@Bean
	@SuppressWarnings("unchecked")
	public RedisScript redisRequestRateLimiterScript() {
		DefaultRedisScript redisScript = new DefaultRedisScript<>();
		redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("META-INF/scripts/request_rate_limiter.lua")));
		redisScript.setResultType(List.class);
		return redisScript;
	}

	@Bean
	//TODO: replace with ReactiveStringRedisTemplate in future
	public ReactiveRedisTemplate<String, String> stringReactiveRedisTemplate(
			ReactiveRedisConnectionFactory reactiveRedisConnectionFactory) {
		RedisSerializer<String> serializer = new StringRedisSerializer();
		RedisSerializationContext<String , String> serializationContext = RedisSerializationContext
				.<String, String>newSerializationContext()
				.key(serializer)
				.value(serializer)
				.hashKey(serializer)
				.hashValue(serializer)
				.build();
		return new ReactiveRedisTemplate<>(reactiveRedisConnectionFactory,
				serializationContext);
	}

	@Bean
	@ConditionalOnMissingBean
	public RedisRateLimiter redisRateLimiter(ReactiveRedisTemplate<String, String> redisTemplate,
											 @Qualifier(RedisRateLimiter.REDIS_SCRIPT_NAME) RedisScript<List<Long>> redisScript,
											 Validator validator) {
		return new RedisRateLimiter(redisTemplate, redisScript, validator);
	}
}

RouteDefinitionRouteLocator#convertToRoute。当定位到具体的路由,会加载GatewayFilter。而filterDefinitions会获取对应的工厂生成对应的GatewayFilter

	private Route convertToRoute(RouteDefinition routeDefinition) {
		AsyncPredicate<ServerWebExchange> predicate = combinePredicates(routeDefinition);
		List<GatewayFilter> gatewayFilters = getFilters(routeDefinition);

		return Route.async(routeDefinition)
				.asyncPredicate(predicate)
				.replaceFilters(gatewayFilters)
				.build();
	}

	private List<GatewayFilter> getFilters(RouteDefinition routeDefinition) {
		List<GatewayFilter> filters = new ArrayList<>();

		//TODO: support option to apply defaults after route specific filters?
		if (!this.gatewayProperties.getDefaultFilters().isEmpty()) {
			filters.addAll(loadGatewayFilters(DEFAULT_FILTERS,
					this.gatewayProperties.getDefaultFilters()));
		}

		if (!routeDefinition.getFilters().isEmpty()) {
			filters.addAll(loadGatewayFilters(routeDefinition.getId(), routeDefinition.getFilters()));
		}

		AnnotationAwareOrderComparator.sort(filters);
		return filters;
	}

	@SuppressWarnings("unchecked")
	private List<GatewayFilter> loadGatewayFilters(String id, List<FilterDefinition> filterDefinitions) {
		List<GatewayFilter> filters = filterDefinitions.stream()
				.map(definition -> {
					GatewayFilterFactory factory = this.gatewayFilterFactories.get(definition.getName());
					if (factory == null) {
                        throw new IllegalArgumentException("Unable to find GatewayFilterFactory with name " + definition.getName());
					}
					Map<String, String> args = definition.getArgs();
					if (logger.isDebugEnabled()) {
						logger.debug("RouteDefinition " + id + " applying filter " + args + " to " + definition.getName());
					}

                    Map<String, Object> properties = factory.shortcutType().normalize(args, factory, this.parser, this.beanFactory);

                    Object configuration = factory.newConfig();

                    ConfigurationUtils.bind(configuration, properties, factory.shortcutFieldPrefix(),
							definition.getName(), validator, conversionService);

                    GatewayFilter gatewayFilter = factory.apply(configuration);
                    if (this.publisher != null) {
                        this.publisher.publishEvent(new FilterArgsEvent(this, id, properties));
                    }
                    return gatewayFilter;
				})
				.collect(Collectors.toList());

		ArrayList<GatewayFilter> ordered = new ArrayList<>(filters.size());
		for (int i = 0; i < filters.size(); i++) {
			GatewayFilter gatewayFilter = filters.get(i);
			if (gatewayFilter instanceof Ordered) {
				ordered.add(gatewayFilter);
			}
			else {
				ordered.add(new OrderedGatewayFilter(gatewayFilter, i + 1));
			}
		}

		return ordered;
	}

RequestRateLimiterGatewayFilterFactory#applyRequestRateLimiterGatewayFilterFactory生成RateLimiter。根据KeyResolver的结果来执行limiter.isAllowed(route.getId(), key)

	@Override
	public GatewayFilter apply(Config config) {
		KeyResolver resolver = getOrDefault(config.keyResolver, defaultKeyResolver);
		RateLimiter<Object> limiter = getOrDefault(config.rateLimiter, defaultRateLimiter);
		boolean denyEmpty = getOrDefault(config.denyEmptyKey, this.denyEmptyKey);
		HttpStatusHolder emptyKeyStatus = HttpStatusHolder.parse(getOrDefault(config.emptyKeyStatus, this.emptyKeyStatusCode));

		return (exchange, chain) -> {
			Route route = exchange.getAttribute(ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR);

			return resolver.resolve(exchange).defaultIfEmpty(EMPTY_KEY).flatMap(key -> {
				if (EMPTY_KEY.equals(key)) {
					if (denyEmpty) {
						setResponseStatus(exchange, emptyKeyStatus);
						return exchange.getResponse().setComplete();
					}
					return chain.filter(exchange);
				}
				return limiter.isAllowed(route.getId(), key).flatMap(response -> {

					for (Map.Entry<String, String> header : response.getHeaders().entrySet()) {
						exchange.getResponse().getHeaders().add(header.getKey(), header.getValue());
					}

					if (response.isAllowed()) {
						return chain.filter(exchange);
					}

					setResponseStatus(exchange, config.getStatusCode());
					return exchange.getResponse().setComplete();
				});
			});
		};
	}

RedisRateLimiter#isAllowed,根据配置中replenishRateburstCapacity执行脚本。redis 中会操作两个 key,request_rate_limiter.{xxx}.tokensrequest_rate_limiter.{xxx}.timestamp

	public Mono<Response> isAllowed(String routeId, String id) {
		if (!this.initialized.get()) {
			throw new IllegalStateException("RedisRateLimiter is not initialized");
		}

		Config routeConfig = loadConfiguration(routeId);

		// How many requests per second do you want a user to be allowed to do?
		int replenishRate = routeConfig.getReplenishRate();

		// How much bursting do you want to allow?
		int burstCapacity = routeConfig.getBurstCapacity();

		try {
			List<String> keys = getKeys(id);


			// The arguments to the LUA script. time() returns unixtime in seconds.
			List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "",
					Instant.now().getEpochSecond() + "", "1");
			// allowed, tokens_left = redis.eval(SCRIPT, keys, args)
			Flux<List<Long>> flux = this.redisTemplate.execute(this.script, keys, scriptArgs);
					// .log("redisratelimiter", Level.FINER);
			return flux.onErrorResume(throwable -> Flux.just(Arrays.asList(1L, -1L)))
					.reduce(new ArrayList<Long>(), (longs, l) -> {
						longs.addAll(l);
						return longs;
					}) .map(results -> {
						boolean allowed = results.get(0) == 1L;
						Long tokensLeft = results.get(1);

						Response response = new Response(allowed, getHeaders(routeConfig, tokensLeft));

						if (log.isDebugEnabled()) {
							log.debug("response: " + response);
						}
						return response;
					});
		}
		catch (Exception e) {
			/*
			 * We don't want a hard dependency on Redis to allow traffic. Make sure to set
			 * an alert so you know if this is happening too much. Stripe's observed
			 * failure rate is 0.01%.
			 */
			log.error("Error determining if user allowed from redis", e);
		}
		return Mono.just(new Response(true, getHeaders(routeConfig, -1L)));
	}

限流脚本解读

  1. 获取上次获取令牌的时间,获取这段时间可以产生的令牌数。比较容量和令牌数的最小值,为当前可以获取的令牌数。
  2. 更新令牌数,判断当前可获取的令牌数和需要的令牌数的大小,如果可以获取,减去获取到的令牌数。
redis.replicate_commands()

local tokens_key = KEYS[1]
local timestamp_key = KEYS[2]
--redis.log(redis.LOG_WARNING, "tokens_key " .. tokens_key)

local rate = tonumber(ARGV[1])
local capacity = tonumber(ARGV[2])
local now = redis.call('TIME')[1]
local requested = tonumber(ARGV[4])

local fill_time = capacity/rate
local ttl = math.floor(fill_time*2)

--redis.log(redis.LOG_WARNING, "rate " .. ARGV[1])
--redis.log(redis.LOG_WARNING, "capacity " .. ARGV[2])
--redis.log(redis.LOG_WARNING, "now " .. now)
--redis.log(redis.LOG_WARNING, "requested " .. ARGV[4])
--redis.log(redis.LOG_WARNING, "filltime " .. fill_time)
--redis.log(redis.LOG_WARNING, "ttl " .. ttl)

local last_tokens = tonumber(redis.call("get", tokens_key))
if last_tokens == nil then
  last_tokens = capacity
end
--redis.log(redis.LOG_WARNING, "last_tokens " .. last_tokens)

local last_refreshed = tonumber(redis.call("get", timestamp_key))
if last_refreshed == nil then
  last_refreshed = 0
end
--redis.log(redis.LOG_WARNING, "last_refreshed " .. last_refreshed)

local delta = math.max(0, now-last_refreshed)
local filled_tokens = math.min(capacity, last_tokens+(delta*rate))
local allowed = filled_tokens >= requested
local new_tokens = filled_tokens
local allowed_num = 0
if allowed then
  new_tokens = filled_tokens - requested
  allowed_num = 1
end

--redis.log(redis.LOG_WARNING, "delta " .. delta)
--redis.log(redis.LOG_WARNING, "filled_tokens " .. filled_tokens)
--redis.log(redis.LOG_WARNING, "allowed_num " .. allowed_num)
--redis.log(redis.LOG_WARNING, "new_tokens " .. new_tokens)

if ttl > 0 then
  redis.call("setex", tokens_key, ttl, new_tokens)
  redis.call("setex", timestamp_key, ttl, now)
end

-- return { allowed_num, new_tokens, capacity, filled_tokens, requested, new_tokens }
return { allowed_num, new_tokens }
标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符 标题复制10行,并且每行大于10个字符

【源码解析】Spring Cloud Gateway使用RedisRateLimiter实现限流_第1张图片

Spring Cloud Gateway使用RedisRateLimiter实现限流
Spring Cloud Gateway使用RedisRateLimiter实现限流
Spring Cloud Gateway使用RedisRateLimiter实现限流
Spring Cloud Gateway使用RedisRateLimiter实现限流
Spring Cloud Gateway使用RedisRateLimiter实现限流
Spring Cloud Gateway使用RedisRateLimiter实现限流

你可能感兴趣的:(源码解析,java,开发语言)