在现代经济环境中,任何一个企业都会面对客户,并且在经营过程中产生千万甚至上亿的数据来观察客户的行为,支撑自身公司业务的发展,数据分析是用适当的分析方法对收集来的大量数据进行分析,将它们加以汇总和存储,以求最大化地开发数据的功能,发挥数据的作用。
数据分析是用适当的分析方法对收集来的大量数据进行分析,将它们加以汇总和存储,以求最大化地开发数据的功能,发挥数据的作用。数据分析是一个从数据中通过分析手段发现业务价值的过程。这个过程的起点是企业分析的目的,这个过程的终点是发现业务价值,利用数据提供支撑。
数据分析的基础是统计学,是计算机的发展才使得对大数据操作成为可能,并使其在各行各业推广。数据分析是数学与计算机科学相结合的产物。
数据是对客观事物观察的结果,表现在各个方面,是对客观事物的逻辑归纳,也是用于表示客观事物的未经加工的原始素材。我们可以从不同维度对数据进行描述。
首先,统计学将数据分为定性数据和定量数据.
定性数据:只能归入类别而不能用数值进行测度的数据称为定性数据。类别不表示顺序,比如:性别,产品的品牌等。这些只能表示类别。
定量数据:既能表现为类别,也能表现为数值,也能进行排序,比如:学历,商品的质量等级等等
从数据连续性角度来看,数据可以是连续的值,例如声音、图像,也可以是离散的,例如符号,文字的数字数据。
在当代社会,数据成为与土地,劳动力,资本,技术传统生产要素并列的生产要素,加快数据要素市场建设关系到国家的发展。同时,在信息技术推动下,数据资源的应用已经由商业和经济领域,逐步扩大到政治,社会治理和公共政策领域,这就给国家的网络信息安全和主权带来较大的挑战。
不是所有的数据都值得保存,应该保存真正用得上的,避免垃圾数据的堆积
数据分析或数据挖掘是把隐藏在各种大小杂乱无章的数据集中的有价值信息提炼出来,从而找到数据中存在的内在规律
对于企业来说,在产品的整个生命周期,从市场调研到售后服务和最终处置的各个过程都需要运用数据分析。例如,产品设计人员在开始一个新的产品设计之前,要通过广泛的设计调查,分析调查数据来判断设计方向,所以,数据分析在工业设计中具有极其重要的地位
通过数据分析,企业管理者可以达到下述三个目标。
在实际生活中,我们将数据分析按照用途划分为描述性统计分析,探索性数据分析,以及验证性数据分析
用定量方法描述数据的频数分析,数据的集中趋势分析,数据离散程度分析,数据的分布,以及一些基本的统计图形等
描述性统计分析是用定量方法去描述数据的特点,即对数据做出统计性描述,主要包括数据的频数分析,数据的集中趋势分析,数据离散程度分析,数据的分布,以及一些基本的统计图形。描述性统计分析是统计分析的第一步,做好这第一步是下面进行正确统计推断的先决条件。
数据尽量少的预先假设下,通过作图,制表,方程拟合,计算特征量来探索数据结构和规律
探索性数据分析是指对数据集在尽量少的预先假设下通过作图,制表,方程拟合,计算特征量方法来探索数据的结构和规律的一种数据分析方法,是对传统统计学假设检验手段的补充。
假设一种模型,然后计算参数,但在实际生活中,往往没有符合假设的模型
传统的统计分析方法常常先假设数据符合一种统计模型,然后依据数据样本来估计模型的一些参数及统计量,以此了解数据的特征,但实际生活中往往有很多数据并不符合假设的统计模型分布,这导致数据分析结果不理想
相比之下,探索性数据分析则是一种更加贴切实际情况的分析方法,它强调让数据自身“说话”,通过探索性数据分析,我们可以最真实,最直观的观察到数据的结构及特征。
强调对已有假设的检验,也就是根据数据样本所提供的证据,做出肯定还是否定有关总体的声明。
验证性数据分析通常强调对已有假设的检验,也就是根据数据样本所提供的证据,做出肯定还是否定有关总体的声明。因此在进行验证性数据分析时,首先要收集相关理论,已有研究等形成明确,完善的假设,并根据假设设计问卷,进行抽样测量,最后检验,修改原假设。验证性数据分析常用方法分别为极大似然估计法和最小二乘法。
最原始和最常用的数据分析方法是表格法和作图法,这两种方法能够解决数据分析中的许多问题
以下是一些数据分析运用到实际生活中的案例:
健康保险公司通过分析数据来预测个人的健康问题,从而制定更加准确的保险策略。
零售企业通过分析数据来了解顾客的购买行为和趋势,从而制定更好的促销策略和计划。
酒店利用数据分析工具来了解客人偏好和行为,提供更加个性化的服务和体验。
交通运输公司利用数据分析工具来优化路线、提高效率和降低成本。
城市规划者利用数据分析工具来了解城市人口分布、流动性和发展趋势,从而更好地规划城市的未来。
这些都是数据分析在现实生活中的应用,通过分析数据来提高效率、减少成本、提供更好的服务和预测未来趋势。
在当前就业市场来看,数据分析师的高薪属性一直是很多年轻毕业生的关注点,很多人更是因为看到其可观的薪资才会想要转入从事数据分析岗位。但数据分析师需要具备多种能力才能胜任。毫不夸张的说,数据分析师这个职业实际上对人的综合能力要求很高,因该师非常善于解决问题的人,具体来说应该包括
数据分析是一个快速发展的领域,未来的发展前景非常广阔。以下是一些可能的趋势和机会:
大数据分析:随着越来越多的数据被收集和存储,需要更强大的工具和技术来分析这些数据。大数据分析将成为数据分析的主要趋势。
人工智能和机器学习:随着机器学习和人工智能技术的进步,数据分析将变得更加智能化。这将使得数据分析工作更加高效和准确。
可视化和报告:数据可视化技术的进步将使分析结果更加易于理解和使用。这将提高数据分析的价值和应用范围。
行业细分:数据分析将逐渐向各个行业细分,例如金融、医疗、营销等。这将为专业领域的数据分析人员提供更多机会。
数据伦理:对于使用个人数据的伦理和法律问题的关注将进一步推动数据分析行业的发展,同时也会提供新的机会和挑战。
总之,数据分析在未来的发展中将会有很多机遇和挑战,需要不断学习和掌握新的技术和技能,以适应不断变化的市场需求和技术发展。
数据分析是一个快速发展的领域,未来的发展前景非常广阔。数据分析在未来的发展中将会有很多机遇和挑战,需要不断学习和掌握新的技术和技能,以适应不断变化的市场需求和技术发展。