Spark上使用pandas API快速入门

文章最前: 我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。

  相关文章:

  1. PySpark 概述
  2. Spark连接快速入门
  3. Spark上使用pandas API快速入门

这是 Spark 上的 pandas API 的简短介绍,主要面向新用户。本笔记本向您展示 pandas 和 Spark 上的 pandas API 之间的一些关键区别。您可以在快速入门页面的“Live Notebook:Spark 上的 pandas API”中自行运行此示例。

习惯上,我们在Spark上导入pandas API如下:

import pandas as pd
import numpy as np
import pyspark.pandas as ps
from pyspark.sql import SparkSession

对象创建

通过传递值列表来创建 pandas-on-Spark 系列,让 Spark 上的 pandas API 创建默认整数索引:

s = ps.Series([1, 3, 5, np.nan, 6, 8])
s
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

通过传递可转换为类似系列的对象字典来创建 pandas-on-Spark DataFrame。

psdf = ps.DataFrame(
    {'a': [1, 2, 3, 4, 5, 6],
     'b': [100, 200, 300, 400, 500, 600],
     'c': ["one", "two", "three", "four", "five", "six"]},
    index=[10, 20, 30, 40, 50, 60])
psdf
a b c
10 1 100 one
20 2 200 two
30 3 300 three
40 4 400 four
50 5 500 five
60 6 600 six

创建pandas DataFrame通过numpyt array, 用datetime 作为索引,label列

dates = pd.date_range('20130101', periods=6)
dates

  DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D')

pdf = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
pdf
A B C D
2013-01-01 0.912558 -0.795645 -0.289115 0.187606
2013-01-02 -0.059703 -1.233897 0.316625 -1.226828
2013-01-03 0.332871 -1.262010 -0.434844 -0.579920
2013-01-04 0.924016 -1.022019 -0.405249 -1.036021
2013-01-05 -0.772209 -1.228099 0.068901 0.896679
2013-01-06 1.485582 -0.709306 -0.202637 -0.248766

现在,dataframe能够转换成pandas 在spark上运行

psdf = ps.from_pandas(pdf)
type(psdf)

 pyspark.pandas.frame.DataFrame

看上去和dataframe一样的使用

psdf
A B C D
2013-01-01 0.912558 -0.795645 -0.289115 0.187606
2013-01-02 -0.059703 -1.233897 0.316625 -1.226828
2013-01-03 0.332871 -1.262010 -0.434844 -0.579920
2013-01-04 0.924016 -1.022019 -0.405249 -1.036021
2013-01-05 -0.772209 -1.228099 0.068901 0.896679
2013-01-06 1.485582 -0.709306 -0.202637 -0.248766

当然通过spark pandas dataframe创建pandas  on spark dataframe 非常容易

spark = SparkSession.builder.getOrCreate()
sdf = spark.createDataFrame(pdf)
sdf.show()

 +--------------------+-------------------+--------------------+--------------------+ | A| B| C| D| +--------------------+-------------------+--------------------+--------------------+ | 0.91255803205208|-0.7956452608556638|-0.28911463069772175| 0.18760566615081622| |-0.05970271470242...| -1.233896949308984| 0.3166246451758431| -1.2268284000402265| | 0.33287106947536615|-1.2620100816441786| -0.4348444277082644| -0.5799199651437185| | 0.9240158461589916|-1.0220190956326003| -0.4052488880650239| -1.0360212104348547| | -0.7722090016558953|-1.2280986385313222| 0.0689011451939635| 0.8966790729426755| | 1.4855822995785612|-0.7093056426018517| -0.2026366848847041|-0.24876619876451092| +--------------------+-------------------+--------------------+--------------------+

从 Spark DataFrame 创建 pandas-on-Spark DataFrame。

psdf = sdf.pandas_api()
psdf
A B C D
0 0.912558 -0.795645 -0.289115 0.187606
1 -0.059703 -1.233897 0.316625 -1.226828
2 0.332871 -1.262010 -0.434844 -0.579920
3 0.924016 -1.022019 -0.405249 -1.036021
4 -0.772209 -1.228099 0.068901 0.896679
5 1.485582 -0.709306 -0.202637 -0.248766

具有特定的dtypes。目前支持 Spark 和 pandas 通用的类型。

psdf.dtypes
A    float64
B    float64
C    float64
D    float64
dtype: object

以下是如何显示下面框架中的顶行。

请注意,Spark 数据帧中的数据默认不保留自然顺序。可以通过设置compute.ordered_head选项来保留自然顺序,但它会导致内部排序的性能开销。

psdf.head()
A B C D
0 0.912558 -0.795645 -0.289115 0.187606
1 -0.059703 -1.233897 0.316625 -1.226828
2 0.332871 -1.262010 -0.434844 -0.579920
3 0.924016 -1.022019 -0.405249 -1.036021
4 -0.772209 -1.228099 0.068901 0.896679

 展示index和columns 通过numpy 数据

psdf.index
Int64Index([0, 1, 2, 3, 4, 5], dtype='int64')
psdf.columns
Index(['A', 'B', 'C', 'D'], dtype='object')
psdf.to_numpy()
array([[ 0.91255803, -0.79564526, -0.28911463,  0.18760567],
       [-0.05970271, -1.23389695,  0.31662465, -1.2268284 ],
       [ 0.33287107, -1.26201008, -0.43484443, -0.57991997],
       [ 0.92401585, -1.0220191 , -0.40524889, -1.03602121],
       [-0.772209  , -1.22809864,  0.06890115,  0.89667907],
       [ 1.4855823 , -0.70930564, -0.20263668, -0.2487662 ]])

通过简单统计展示你的数据:

psdf.describe()
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.470519 -1.041829 -0.157720 -0.334542
std 0.809428 0.241511 0.294520 0.793014
min -0.772209 -1.262010 -0.434844 -1.226828
25% -0.059703 -1.233897 -0.405249 -1.036021
50% 0.332871 -1.228099 -0.289115 -0.579920
75% 0.924016 -0.795645 0.068901 0.187606
max 1.485582 -0.709306 0.316625 0.896679

转置你的数据:

psdf.T
0 1 2 3 4 5
A 0.912558 -0.059703 0.332871 0.924016 -0.772209 1.485582
B -0.795645 -1.233897 -1.262010 -1.022019 -1.228099 -0.709306
C -0.289115 0.316625 -0.434844 -0.405249 0.068901 -0.202637
D 0.187606 -1.226828 -0.579920 -1.036021 0.896679 -0.248766

通过index进行排序:

psdf.sort_index(ascending=False)
A B C D
5 1.485582 -0.709306 -0.202637 -0.248766
4 -0.772209 -1.228099 0.068901 0.896679
3 0.924016 -1.022019 -0.405249 -1.036021
2 0.332871 -1.262010 -0.434844 -0.579920
1 -0.059703 -1.233897 0.316625 -1.226828
0 0.912558 -0.795645 -0.289115 0.187606

按照值排序:

psdf.sort_values(by='B')
A B C D
2 0.332871 -1.262010 -0.434844 -0.579920
1 -0.059703 -1.233897 0.316625 -1.226828
4 -0.772209 -1.228099 0.068901 0.896679
3 0.924016 -1.022019 -0.405249 -1.036021
0 0.912558 -0.795645 -0.289115 0.187606
5 1.485582 -0.709306 -0.202637 -0.248766

 缺失数据

Spark 上的 Pandas API 主要使用该值np.nan来表示缺失的数据。默认情况下,它不包含在计算中。

pdf1 = pdf.reindex(index=dates[0:4], columns=list(pdf.columns) + ['E'])
pdf1.loc[dates[0]:dates[1], 'E'] = 1
psdf1 = ps.from_pandas(pdf1)
psdf1

A
C D
2013-01-01 0.912558 -0.795645 -0.289115 0.187606 1.0
2013-01-02 -0.059703 -1.233897 0.316625 -1.226828 1.0
2013-01-03 0.332871 -1.262010 -0.434844 -0.579920
2013-01-04 0.924016 -1.022019
 

删除任何缺少数据的行。

psdf1.dropna(how='any')
A B C D E
2013-01-01 0.912558 -0.795645 -0.289115 0.187606 1.0
2013-01-02 -0.059703 -1.233897 0.316625 -1.226828
psdf1.fillna(value=5)
A B C D E
2013-01-01 0.912558 -0.795645 -0.289115 0.187606 1.0
2013-01-02 -0.059703 -1.233897 0.316625 -1.226828 1.0
2013-01-03 0.332871 -1.262010 -0.434844 -0.579920 5.0
2013-01-04 0.924016 -1.022019 -0.405249 -1.036021 5

操作 

统计数据

执行描述性统计:

psdf.mean()

A    0.470519
B   -1.041829
C   -0.157720
D   -0.334542
dtype: float64


Spark配置

PySpark 中的各种配置可以在 Spark 上的 pandas API 内部应用。例如,您可以启用 Arrow 优化来极大地加快内部 pandas 转换。另请参阅 PySpark 文档中的 Pandas 使用 Apache Arrow 的 PySpark 使用指南。

prev = spark.conf.get("spark.sql.execution.arrow.pyspark.enabled")  # Keep its default value.
ps.set_option("compute.default_index_type", "distributed")  # Use default index prevent overhead.
import warnings
warnings.filterwarnings("ignore")  # Ignore warnings coming from Arrow optimizations.
spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", True)
%timeit ps.range(300000).to_pandas()
每个循环 900 ms ± 186 ms(7 次运行的平均值 ± 标准差,每次 1 个循环)
spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", False)
%timeit ps.range(300000).to_pandas()
每个循环 3.08 s ± 227 ms(7 次运行的平均值 ± 标准差,每次 1 个循环)
ps.reset_option("compute.default_index_type")
spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", prev)  # Set its default value back.

分组

我们所说的“分组依据”是指涉及以下一个或多个步骤的过程:

  • 根据某些标准将数据分组

  • 独立地将函数应用于每个组

  • 将结果组合成数据结构

psdf = ps.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
                          'foo', 'bar', 'foo', 'foo'],
                    'B': ['one', 'one', 'two', 'three',
                          'two', 'two', 'one', 'three'],
                    'C': np.random.randn(8),
                    'D': np.random.randn(8)})
psdf
A B C D
0 foo one 1.039632 -0.571950
1 bar one 0.972089 1.085353
2 foo two -1.931621 -2.579164
3 bar three -0.654371 -0.340704
4 foo two -0.157080 0.893736
5 bar two 0.882795 0.024978
6 foo one -0.149384 0.201667
7 foo three -1.355136 0.693883
分组后求和:
psdf.groupby('A').sum()
C D
A
bar 1.200513 0.769627
foo -2.553589 -1.361828

按多列分组形成分层索引,我们可以再次应用 sum 函数。

psdf.groupby(['A', 'B']).sum()
C D
A B
foo one 0.890248 -0.370283
two -2.088701 -1.685428
bar three -0.654371 -0.340704
foo three -1.355136 0.693883
bar two 0.882795 0.024978
one 0.972089 1.085353

 绘图

pser = pd.Series(np.random.randn(1000),
                 index=pd.date_range('1/1/2000', periods=1000))
psser = ps.Series(pser)
psser = psser.cummax()
psser.plot()


Spark上使用pandas API快速入门_第1张图片

在 DataFrame 上,plot()方法可以方便地绘制带有标签的所有列:

pdf = pd.DataFrame(np.random.randn(1000, 4), index=pser.index,
                   columns=['A', 'B', 'C', 'D'])
psdf = ps.from_pandas(pdf)
psdf = psdf.cummax()
psdf.plot()

Spark上使用pandas API快速入门_第2张图片 有关更多详细信息,请参阅绘图文档。

获取数据输入/输出

CSV

CSV 简单且易于使用。请参阅此处写入 CSV 文件,并参阅此处读取 CSV 文件。

psdf.to_csv('foo.csv')
ps.read_csv('foo.csv').head(10)
A B C D
0 -1.187097 -0.134645 0.377094 -0.627217
1 0.331741 0.166218 0.377094 -0.627217
2 0.331741 0.439450 0.377094 0.365970
3 0.621620 0.439450 1.190180 0.365970
4 0.621620 0.439450 1.190180 0.365970
5 2.169198 1.069183 1.395642 0.365970
6 2.755738 1.069183 1.395642 1.045868
7 2.755738 1.069183 1.395642 1.045868
8 2.755738 1.069183 1.395642 1.045868
9 2.755738 1.508732 1.395642
 

Parquet

parquet是高效和压缩的数据格式,支持快速的读写;下图是它读写的例子。

psdf.to_parquet('bar.parquet')
ps.read_parquet('bar.parquet').head(10)
A B C D
0 -1.187097 -0.134645 0.377094 -0.627217
1 0.331741 0.166218 0.377094 -0.627217
2 0.331741 0.439450 0.377094 0.365970
3 0.621620 0.439450 1.190180 0.365970
4 0.621620 0.439450 1.190180 0.365970
5 2.169198 1.069183 1.395642 0.365970
6 2.755738 1.069183 1.395642 1.045868
7 2.755738 1.069183 1.395642 1.045868
8 2.755738 1.069183 1.395642 1.045868
9 2.755738 1.508732 1.395642 1.556933

Spark IO 

另外,pandas API能很好支持Spark多种数据源结构,例如ORC和其他的数据源,这里看他写入的数据源和读取数据源。

psdf.to_spark_io('zoo.orc', format="orc")
ps.read_spark_io('zoo.orc', format="orc").head(10)
A B C D
0 -1.187097 -0.134645 0.377094 -0.627217
1 0.331741 0.166218 0.377094 -0.627217
2 0.331741 0.439450 0.377094 0.365970
3 0.621620 0.439450 1.190180 0.365970
4 0.621620 0.439450 1.190180 0.365970
5 2.169198 1.069183 1.395642 0.365970
6 2.755738 1.069183 1.395642 1.045868
7 2.755738 1.069183 1.395642 1.045868
8 2.755738 1.069183 1.395642 1.045868
9 2.755738 1.508732 1.395642 1.556933

这里看输入和输出文档获取更多的细节。

Input/Output — PySpark 3.5.0 documentation

你可能感兴趣的:(pyspark专栏,spark,pandas,大数据)