gxhxjxizj

(1) # coding: utf-8

  (2) import numpy as np

  (3) Adult_group = np.array([177, 169, 171, 171, 173, 175, 170, 173, 169, 172, 173, 175,

179, 176, 166, 170, 167, 171, 171, 169])

  (4) Children_group = np.array([72, 76, 72, 70, 69, 76, 77, 72, 6 8, 74, 72, 70, 71, 73,

75, 71, 72, 72, 71, 67])

  (5) print (u' 成人组标准差:%.2f 幼儿组标准差:%.2f'

  (6) % (np.std(Adult_group, ddof=1), np.std(Children_group, ddof=1)))

  (7) print (u' 成人组均值:%.2f 幼儿组均值:%.2f'

  (8) % (np.mean(Adult_group), np.mean(Children_group)))

  (9) print (u' 成人组离散系数:%.4f 幼儿组离散系数:

%.4f' 
  (10)           % ((np.std(Adult_group, ddof=1) / np.mean(Adult_group), np.std(Children_ 
group, ddof=1) / np.mean(Children_group)))) 

 

 

 

(1) # coding: utf-8

  (2) import numpy as np

  (3) import matplotlib.pyplot as plt

  (4) import scipy.stats as sts

  (5) plt.rcParams['font.sans-serif']=['SimHei']

  (6) plt.rcParams['axes.unicode_minus']=False

  (7) samples = np.around(np.random.normal(loc=0.0, scale=1.0, size=580000),2)

  (8) plt.figure(num=1,dpi=300)

  (9) plt.ylabel(u' 频数', size=14)

  (10) plt.hist(samples, bins=1300, range=(-5,5))

  (11) n_mean=np.round(np.mean(samples),2)

  (12) n_median=np.round(np.median(samples),2)

  (13) n_mode=sts.mode(samples)

  (14) n_Skewness,n_kurtosis=sts.describe(samples)[4:]

  (15) plt.text(-5,2100,u'均值:%.2f;中位数:%.2f; 众数:%.2f' %(n_mean, n_median, n_mode.mode) ,

size=8)

  (16) plt.text(-5,2000,u'偏度:%.4f; 峰度:%.4f' %(n_Skewness,n_kurtosis), size=8)

(17) plt.show()

 

 

(1) import numpy as np

  (2) import matplotlib

  (3) import matplotlib.pyplot as plt

  (4) np.random.seed(1)

  (5) x = np.random.randint(0, 100, 50)

  (6) y1 = 0.8*x + np.random.normal(0, 15, 50)

  (7) y2 = 100 - 0.7*x + np.random.normal(0, 15, 50)

  (8) y3 = np.random.randint(0, 100, 50)

  (9) r1=np.corrcoef(x, y1)

  (10) r2=np.corrcoef(x, y2)

  (11) r3=np.corrcoef(x, y3)

  (12) fig = plt.figure()

  (13) plt.subplot(131)

  (14) plt.scatter(x, y1,color='k')

  (15) plt.subplot(132)

  (16) plt.scatter(x, y2,color='k')

  (17) plt.subplot(133)

  (18) plt.scatter(x, y3,color='k')

  (19) print r1

  (20) print r2

  (21) print r3

  (22) plt.show()

 

 

 

你可能感兴趣的:(笔记,课程设计)