DirectByteBuffer(int cap) { // package-private
//初始化Buffer的四个核心属性
super(-1, 0, cap, cap);
//判断是否需要页面对齐,通过参数-XX:+PageAlignDirectMemory控制,默认为false
boolean pa = VM.isDirectMemoryPageAligned();
int ps = Bits.pageSize();
long size = Math.max(1L, (long)cap + (pa ? ps : 0));
//保留总分配内存(按页分配)的大小和实际内存的大小
Bits.reserveMemory(size, cap);
long base = 0;
try {
// 通过unsafe.allocateMemory分配堆外内存,并返回堆外内存的基地址
base = unsafe.allocateMemory(size);
} catch (OutOfMemoryError x) {
// 分配失败,释放内存
Bits.unreserveMemory(size, cap);
throw x;
}
// 初始化内存空间为0
unsafe.setMemory(base, size, (byte) 0);
// 设置内存起始地址
if (pa && (base % ps != 0)) {
// Round up to page boundary
address = base + ps - (base & (ps - 1));
} else {
address = base;
}
// 构建Cleaner对象用于跟踪DirectByteBuffer对象的垃圾回收,以实现当DirectByteBuffer被垃圾回收时,堆外内存也会被释放
cleaner = Cleaner.create(this, new Deallocator(base, size, cap));
att = null;
}
1.2.2 判断是否有足够的空间可供申请java.nio.Bits#reserveMemory
// 该方法主要用于判断申请的堆外内存是否超过了用例指定的最大值
// 如果还有足够空间可以申请,则更新对应的变量
// 如果已经没有空间可以申请,则抛出OutOfMemoryError
// 参数解释:
// size:根据是否按页对齐,得到的真实需要申请的内存大小
// cap:用户指定需要的内存大小(<=size)
static void reserveMemory(long size, int cap) {
// 获取最大可以申请的对外内存大小,默认值是64MB
// 可以通过参数-XX:MaxDirectMemorySize=设置这个大小
// -XX:MaxDirectMemorySize限制的是用户申请的大小,而不考虑对齐情况
if (!memoryLimitSet && VM.isBooted()) {
maxMemory = VM.maxDirectMemory();
memoryLimitSet = true;
}
// optimist!
if (tryReserveMemory(size, cap)) {
return;
}
final JavaLangRefAccess jlra = SharedSecrets.getJavaLangRefAccess();
// retry while helping enqueue pending Reference objects
// which includes executing pending Cleaner(s) which includes
// Cleaner(s) that free direct buffer memory
while (jlra.tryHandlePendingReference()) {
if (tryReserveMemory(size, cap)) {
return;
}
}
// trigger VM's Reference processing
// 如果已经没有足够空间,则尝试手动触发一次Full GC,触发释放堆外内存
System.gc();
// a retry loop with exponential back-off delays
// (this gives VM some time to do it's job)
boolean interrupted = false;
try {
long sleepTime = 1;
int sleeps = 0;
while (true) {
if (tryReserveMemory(size, cap)) {
return;
}
if (sleeps >= MAX_SLEEPS) {
break;
}
if (!jlra.tryHandlePendingReference()) {
try {
Thread.sleep(sleepTime);
sleepTime <<= 1;
sleeps++;
} catch (InterruptedException e) {
interrupted = true;
}
}
}
// no luck
throw new OutOfMemoryError("Direct buffer memory");
} finally {
if (interrupted) {
// don't swallow interrupts
Thread.currentThread().interrupt();
}
}
}
其中,如果系统中内存( 即,堆外内存 )不够的话:
final JavaLangRefAccess jlra = SharedSecrets.getJavaLangRefAccess();
// retry while helping enqueue pending Reference objects
// which includes executing pending Cleaner(s) which includes
// Cleaner(s) that free direct buffer memory
while (jlra.tryHandlePendingReference()) {
if (tryReserveMemory(size, cap)) {
return;
}
}
// 参数解释:
// size:根据是否按页对齐,得到的真实需要申请的内存大小
// cap:用户指定需要的内存大小(<=size)
private static boolean tryReserveMemory(long size, int cap) {
// -XX:MaxDirectMemorySize limits the total capacity rather than the
// actual memory usage, which will differ when buffers are page aligned.
// totalCapacity:目前用户已经申请的总空间
// maxMemory:堆外内存设置最大值
// reservedMemory:真实的目前保留的堆外内存空间
long totalCap;
while (cap <= maxMemory - (totalCap = totalCapacity.get())) {
if (totalCapacity.compareAndSet(totalCap, totalCap + cap)) {
reservedMemory.addAndGet(size);
count.incrementAndGet();
return true;
}
}
return false;
}
调用AtmoticLong#compareAndSet(long expect, long update),最终实现通过Unsafe更新用户申请的总内存空间大小totalCapacity+cap,即unsafe.compareAndSwapLong(valueOffset,expect,update)
/**
* Atomically sets the value to the given updated value
* if the current value {@code ==} the expected value.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful. False return indicates that
* the actual value was not equal to the expected value.
*/
public final boolean compareAndSet(long expect, long update) {
return unsafe.compareAndSwapLong(this, valueOffset, expect, update);
}
总的来说,Bits.reserveMemory(size, cap)方法在可用堆外内存不足以分配给当前要创建的堆外内存大小时,会实现以下的步骤来尝试完成本次堆外内存的创建: ① 触发一次非堵塞的Reference#tryHandlePending(false)。该方法会将已经被JVM垃圾回收的DirectBuffer对象的堆外内存释放。 ② 如果进行一次堆外内存资源回收后,还不够进行本次堆外内存分配的话,则进行 System.gc()。System.gc()会触发一个full gc,但你需要知道,调用System.gc()并不能够保证full gc马上就能被执行。所以在后面打代码中,会进行最多9次尝试,看是否有足够的可用堆外内存来分配堆外内存。并且每次尝试之前,都对延迟等待时间,已给JVM足够的时间去完成full gc操作。 注意,如果你设置了-XX:+DisableExplicitGC,将会禁用显示GC,这会使System.gc()调用无效。 ③ 如果9次尝试后依旧没有足够的可用堆外内存来分配本次堆外内存,则抛出OutOfMemoryError("Direct buffer memory”)异常。
public abstract class Reference {
//被监控的对象:DirectByteBuffer对象
private T referent; /* Treated specially by GC */
//队列ReferenceQueue对象
volatile ReferenceQueue super T> queue;
/* When active: NULL
* pending: this
* Enqueued: next reference in queue (or this if last)
* Inactive: this
*/
@SuppressWarnings("rawtypes")
volatile Reference next;
/* When active: next element in a discovered reference list maintained by GC (or this if last)
* pending: next element in the pending list (or null if last)
* otherwise: NULL
*/
//即将要pending的下一个Reference
transient private Reference discovered; /* used by VM */
static private class Lock { }
private static Lock lock = new Lock();
//被Jvm赋值:DirectByteBuffer对象被GC回收后对应的Cleaner
private static Reference
我们的Java程序需要依赖JVM去运行,会产生堆内垃圾数据需要通过YGC和FGC实现堆内内存垃圾回收(当然后边ZGC机制会有所不同)。例如CMS垃圾回收器FGC时,CMS会对所有分配的堆内内存进行完整的扫描,此刻Java程序是停滞运行的,也是大家常看到的STW(Stop The World)时间戳,也就是FGC回收程序暂停所耗时长。每次垃圾收集对Java应用造成的影响所产生的STW大小,跟堆的大小是成正比的。过大的堆FGC STW会更久影响Java应用的性能。
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {