【
题意】给出一个由n个点,m条边组成的无向图。求最少去掉多少点才能使得图中存在两点,它们之间不连通。 【
思路】回想一下s->t的最小点割,就是去掉多少个点能使得s、t不连通。那么求点连通度就枚举源点、汇点,然后取其中最小点割的最小值就好了。注意如果最大流大于节点数,则应该把它修改为节点数。 【
代码】
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2) #define mem(a,b) memset(a,b,sizeof(a)) using namespace std; const int MAXV = 105; const int MAXE = 5005; const int oo = 0x3fffffff; /* Dinic-2.0-2013.07.21: adds template. double & int 转换方便多了,也不易出错 ~*/ template
struct Dinic{ struct node{ int u, v; T flow; int opp; int next; }arc[2*MAXE]; int vn, en, head[MAXV]; int cur[MAXV]; int q[MAXV]; int path[2*MAXE], top; int dep[MAXV]; void init(int n){ vn = n; en = 0; mem(head, -1); } void insert_flow(int u, int v, T flow){ arc[en].u = u; arc[en].v = v; arc[en].flow = flow; arc[en].next = head[u]; head[u] = en ++; arc[en].u = v; arc[en].v = u; arc[en].flow = 0; arc[en].next = head[v]; head[v] = en ++; } bool bfs(int s, int t){ mem(dep, -1); int lq = 0, rq = 1; dep[s] = 0; q[lq] = s; while(lq < rq){ int u = q[lq ++]; if (u == t){ return true; } for (int i = head[u]; i != -1; i = arc[i].next){ int v = arc[i].v; if (dep[v] == -1 && arc[i].flow > 0){ dep[v] = dep[u] + 1; q[rq ++] = v; } } } return false; } T solve(int s, int t){ T maxflow = 0; while(bfs(s, t)){ int i, j; for (i = 1; i <= vn; i ++) cur[i] = head[i]; for (i = s, top = 0;;){ if (i == t){ int mink; T minflow = 0x7fffffff; for (int k = 0; k < top; k ++) if (minflow > arc[path[k]].flow){ minflow = arc[path[k]].flow; mink = k; } for (int k = 0; k < top; k ++) arc[path[k]].flow -= minflow, arc[path[k]^1].flow += minflow; maxflow += minflow; top = mink; i = arc[path[top]].u; } for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){ int v = arc[j].v; if (arc[j].flow && dep[v] == dep[i] + 1) break; } if (j != -1){ path[top ++] = j; i = arc[j].v; } else{ if (top == 0) break; dep[i] = -1; i = arc[path[-- top]].u; } } } return maxflow; } }; Dinic
dinic; struct path{ int u, v; }p[MAXE]; int main(){ //freopen("test.in", "r", stdin); //freopen("test.out", "w", stdout); int n, m; while(scanf("%d %d", &n, &m) != EOF){ if (m == 0){ if (n == 1) puts("1"); else puts("0"); continue; } for (int i = 0; i < m; i ++){ scanf(" (%d,%d)", &p[i].u, &p[i].v); p[i].u ++, p[i].v ++; } int res = oo; for (int i = 1; i <= n; i ++){ for (int j = i+1; j <= n; j ++){ dinic.init(2*n); for (int k = 1; k <= n; k ++){ dinic.insert_flow(k, n+k, 1); } for (int k = 0; k < m; k ++){ dinic.insert_flow(n+p[k].u, p[k].v, oo); dinic.insert_flow(n+p[k].v, p[k].u, oo); } res = min(res, dinic.solve(n+i, j)); } } if(res == oo) res = n; printf("%d\n",res); } return 0; }
【
点连通度、边连通度】 [点连通度]:最少去掉多少点才能使得图中存在两点,它们之间不连通。 [边连通度]:最少去掉多少边才能使得图中存在两点,它们之间不连通。 [
有向图边连通度]:按图建立流网络,每条边容量为1,枚举源汇点求最小边割集,并取最小值。 [
无向图边连通度]:把无向边转化为两条相反方向的有向边转换为有向图边连通度即可。 [
点连通度]:求最小边割集变为求最小点割集,具体做法是:每个点拆成(i, i', 1)的边,原图中的边变成(u, v, oo)的边,源点s为s',汇点t还是t。然后枚举源汇点求最小点割集,并取最小值。无向图转有向图的做法和上面一样。