迭代合成中小量液体样品静态法饱和蒸气压高精度自动测量解决方案

迭代合成中小量液体样品静态法饱和蒸气压高精度自动测量解决方案_第1张图片

摘要:针对目前静态法液体饱和蒸气压测量中存在测量精度差、自动化程度低以及无法进行微量液体样品测试的问题,本文提出了微量样品蒸气压高精度自动测量解决方案。解决方案基于静态法原理,采用了低漏率的测试装置和高精度电容真空计,微量样品测试装置和真空计整体放置在烘箱内进行加热,提高温度和蒸气压分布的均匀性,将饱和蒸气压测量精度提高到了1%以内。同时采用耐腐蚀的电控针阀,可实现整个快速测试过程的自动化。

原文阅读:(PDF格式);微信号:eyoung_HeML


1. 问题的提出

液体饱和蒸气压是指在密闭条件和一定温度下,与液体处于相平衡的蒸气所具有的压强。同一液体在不同温度下具有不同的饱和蒸气压,且随着温度的升高而增大。饱和蒸气压是液体的基础热力学数据,它不仅在化学、化工领域,而且在、电子、冶金、医药、环境工程乃至航空航天领域都具有重要的地位,而且是这些研究领域中必不可少的基础数据,尤其在工业化学品和石油行业的应用最为广泛。

目前有许多液体蒸气压测试方法,主要有但不限于静态法、沸点法、蒸腾法、逸出法等,通过这些方法以满足不同的压力状态、样品大小、温度范围和材料兼容性要求。但这些现有方法还是无法满足新材料研究的要求,一方面是测量精度较差,另一方面对于一些特殊工艺要求蒸气压测量时液体样品量小、测量精度高以及快速测量还是无能为力,最典型的就是采用迭代合成以获得所需的分子结构,这涉及到针对产物性质的最大数量化合物需使用最少量的合成质量进行筛选,由此对液体饱和蒸气压测量提出了以下三方面的要求:

(1)微量液体样品(约0.5毫升)。

(2)高精度测量,误差小于1%。

(3)简单且自动化的测量装置。

为了解决诸如迭代工艺所需的蒸气压测量的上述特殊要求,特别针对高测量精度、短测量时间和微量液体样品用量,本文提出一种简便的静态法饱和蒸气压高精度自动测量解决方案。

2. 解决方案

解决方案的基本思路是基于传统的静态法,即将微量液体样品注入到样品管内,关键是将整个测量装置放置(包括高精度电容真空计)在烘箱内以保证整体温度和整体真空压力的一致性和准确性。整个微量液体饱和蒸气压高精度测量装置结构如图1所示。

迭代合成中小量液体样品静态法饱和蒸气压高精度自动测量解决方案_第2张图片 图1 微量液体饱和蒸气压高精度自动测量装置结构示意图

如图1所示,蒸气压测量装置主体由真空样品容器、两个316不锈钢卡套三通、真空样品容器、硼硅酸盐玻璃管、电容真空计和三只热电偶温度传感器构成。其中一个卡套三通用来向真有样品容器注入液体样品和抽气,另一个卡套三通用作连接电容真空计和抽真空接口。装置整体放置在烘箱内,以使得整个装置主体整体保持均匀的温度,以防止蒸汽在设置的任何部分冷凝,这是决定提高饱和蒸气压测量精度的关键措施之一,其中用了三只安装在不同位置处的热电偶检测装置主体的温度是否均匀。

装置中的一个卡套三通顶部连接一个电控针阀,此电控针阀用来控制液体样品的注入量并同时起到真空密封的作用;另一个卡套三通排气端也连接一个电控针阀,开启时抽取真空,闭合时起到真空密封作用。这两个电控针阀由一个真空压力控制器实施控制。

烘箱加热和温度调节由一个PID温度程序控制器控制,可以通过计算机软件进行不同温度设定点的编辑和自动程序控制。烘箱温度控制过程中,通过多通道数据采集器记录三只热电偶温度传感器的测量值以及电容真空计的真空压力测量值。

在蒸气压测量装置使用前,要使用氦气检漏仪来检测装置的漏率,即关闭顶部的电控针阀和开启右侧的电控针阀,开启真空泵对测量装置主体抽取真空,装置内的所有空气被泵出系统。然后关闭右侧电控针阀,并用检漏仪检测泄漏情况。整个测量装置要求具有很小的真空漏率,以免外部空气侵入,否则会对饱和蒸汽压准确测量带来严重误差。

微量样品饱和蒸气压测量分为以下几个步骤:

(1)首先将液体样品瓶,或用透明玻璃管作为液体样品容器,连接到顶部电控针阀,调节此电控针阀的开度将约为0.5毫升的被测液体样品引入真空样品容器,然后关闭此电控针阀,即整个样品液体按照图1中的红色点线描绘的路径流动。

(2)液体样品注入样品容器后,开启右边的电控针阀和真空泵抽取真空,气体按照图1中的橘黄色线描绘的路径排出。

(3)当抽取真空达到极限真空度后,关闭右侧电控针阀使测量装置主体以及内部的液体样品处于室温和高真空状态。然后开启多通道数据采集器,分别采集三个位置处的温度和样品容器内的真空度。这三个位置处的温度应该基本一致,说明装置主体的温度均匀。这些温度值和真空度作为饱和蒸气压测量的起始值。

(4)对温度程序控制器设置不同的设定点,设定点由小到大设置,且每个温度设定点需设置一定的恒温时间,然后使控制器控制烘箱温度按照设定程序进行变化。此时,数据采集器同时检测各个位置处的温度值和样品容器内的真空压力变化。在某一恒定温度下,样品容器内的真空压力变化过程如图2所示。随着烘箱温度按照设定程序的台阶式变化,通过多通道数据采集器可以获得一些列不同温度对应的图2所示真空压力变化曲线,由这些曲线的压力稳定值可得到对应的饱和蒸气压。

迭代合成中小量液体样品静态法饱和蒸气压高精度自动测量解决方案_第3张图片 图2 静态法饱和蒸气压测试过程

为了实现微量液体样品饱和蒸气压的高精度快速测量,具体实施过程中还需注意以下几点:

(1)装置本体的设计和尺寸要首先保证装置温度的均匀性,以避免温度不均匀引起的蒸汽压力的非均匀性。同时,装置本体中的各个部件、电控针阀和任何接口都需要具有很好的真空密封性能,避免漏气对蒸气压的影响。

(2)为了保证测量精度,真空计最好选择精度最高的可达到0.25%的电容真空计。

(3)测量装置使用前和使用过程中,需采用纯蒸馏水和2-丙醇进行考核和定期校验,热电偶温度传感器也需进行定期校验。

3. 总结

综上所述,本文提出的解决方案尽管依然采用的是经典的静态法,但通过采用低漏率的真空结构、电控针阀、电容真空计和装置整体加热,很好的保证了温度均匀性和蒸气压测量准确性,减小了饱和蒸气压测量误差。本解决方案虽然设计用来测量微量液体样品,也可以推广应用到其它大容量液体的饱和蒸气压测量。

~~~~~~~~~~~~~~~

迭代合成中小量液体样品静态法饱和蒸气压高精度自动测量解决方案_第4张图片

你可能感兴趣的:(真空压力流量温度张力控制,饱和蒸气压测量,静态法,液体,微量样品,耐腐蚀电控针阀)