ALG不等式

a , b > 0 a,b>0 a,b>0
a b < a − b ln ⁡ a − ln ⁡ b < a + b 2 \sqrt{ab} < \frac{a - b}{\ln a - \ln b} < \frac{a + b}{2} ab <lnalnbab<2a+b

证明:
不妨假设 a > b > 0 a>b > 0 a>b>0

右边
a − b ln ⁡ a − ln ⁡ b < a + b 2 ln ⁡ a − ln ⁡ b > 2 ( a − b ) a + b ln ⁡ a b > 2 ( a b − 1 ) a b + 1 ( a b + 1 ) ln ⁡ a b − 2 ( a b − 1 ) > 0 \begin{aligned} \frac{a - b}{\ln a - \ln b} &< \frac{a + b}{2}\\ \ln a - \ln b & >\frac{2\left(a - b\right)}{a + b}\\ \ln \frac{a}{b} &> \frac{2\left(\frac{a}{b} - 1\right)}{\frac{a}{b} + 1}\\ \left(\frac{a}{b} + 1\right)\ln\frac{a}{b} - 2\left(\frac{a}{b}- 1\right) &>0 \end{aligned} lnalnbablnalnblnba(ba+1)lnba2(ba1)<2a+b>a+b2(ab)>ba+12(ba1)>0
t = a b > 1 t = \frac{a}{b} > 1 t=ba>1
f ( t ) = ( t + 1 ) ln ⁡ t − 2 ( t − 1 ) f\left(t\right) =\left(t+1\right)\ln t -2\left(t-1\right) f(t)=(t+1)lnt2(t1)
f ′ ( t ) = ln ⁡ t + 1 t − 1 f^{\prime} \left(t\right)=\ln t +\frac{1}{t}-1 f(t)=lnt+t11
f ′ ′ ( t ) = t − 1 t 2 > 0 f^{\prime\prime}\left(t\right) = \frac{t - 1}{t^2} >0 f′′(t)=t2t1>0
f ′ ( t ) > f ′ ( 1 ) = 0 f^{\prime}\left(t\right) > f^{\prime}\left(1\right)=0 f(t)>f(1)=0
f ( t ) > f ( 1 ) = 0 f\left(t\right) > f\left(1\right)=0 f(t)>f(1)=0
因此成立

左边
a b < a − b ln ⁡ a − ln ⁡ b ln ⁡ a − ln ⁡ b < a b − b a 2 ln ⁡ a b − a b + b a < 0 \begin{aligned} \sqrt{ab}&< \frac{a - b}{\ln a - \ln b} \\ \ln a - \ln b & <\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\\ 2\ln\sqrt{\frac{a}{b}}-\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}} &<0 \end{aligned} ab lnalnb2lnba ba +ab <lnalnbab<ba ab <0
t = a b > 1 t = \frac{a}{b} > 1 t=ba>1
g ( t ) = 2 ln ⁡ t − t + 1 t g\left(t\right) = 2\ln t - t + \frac{1}{t} g(t)=2lntt+t1
g ′ ( t ) = 2 t − 1 − 1 t 2 = − ( t − 1 ) 2 t 2 < 0 g^{\prime}\left(t\right)=\frac{2}{t}-1-\frac{1}{t^2}=-\frac{\left(t-1\right)^2}{t^2}<0 g(t)=t21t21=t2(t1)2<0
g ( t ) < g ( 1 ) = 0 g\left(t\right) < g\left(1\right)=0 g(t)<g(1)=0
因此成立

你可能感兴趣的:(数学,机器学习,线性代数,算法)