- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- 深度学习在医学影像分析中的应用:DeepSeek系统的实践与探索
Evaporator Core
#深度学习#DeepSeek快速入门DeepSeek进阶开发与应用深度学习人工智能
随着人工智能技术的迅猛发展,深度学习在医学领域的应用逐渐成为研究热点。医学影像分析作为医疗诊断的重要组成部分,正受益于深度学习技术的突破。DeepSeek系统是一种基于深度学习的医学影像分析平台,旨在通过高效、精准的算法辅助医生进行疾病诊断和治疗决策。本文将深入探讨DeepSeek系统的技术原理、实现方法及其在医学影像分析中的实际应用,并结合代码示例展示其核心功能。1.DeepSeek系统的技术架
- 基于生成对抗网络(GAN)的图像超分辨率实战:从SRGAN到ESRGAN
Evaporator Core
#深度学习强化学习生成模型生成对抗网络人工智能神经网络
图像超分辨率(ImageSuper-Resolution)是一种通过算法将低分辨率图像转换为高分辨率图像的技术,广泛应用于医学影像、卫星图像和视频增强等领域。生成对抗网络(GAN)是图像超分辨率的经典方法,而增强型超分辨率生成对抗网络(ESRGAN)则通过引入残差网络和感知损失进一步提升了图像质量。本文将通过一个完整的实战案例,展示如何使用SRGAN和ESRGAN进行图像超分辨率,并提供详细的代码
- 详解 FO-DICOM:医疗影像处理的强大工具
猿享天开
DICOM医学影像专业知识精讲人工智能
在现代医疗领域,DICOM(数字成像和通信医学)标准是用于存储和传输医学影像的广泛采用的协议。FellowOakDICOM(简称FO-DICOM)是一个功能齐全的.NET库,专门用于处理DICOM文件和协议。本文将详细介绍FO-DICOM的功能、优点以及在开发医疗影像应用中的应用。主要功能1.DICOM文件操作FO-DICOM提供了全面的方法来处理DICOM文件。开发者可以通过同步或异步的方式读取
- 医学人工智能影像诊断数据收集与整理
V搜xhliang0246
人工智能健康医疗算法
在医学领域中,人工智能(AI)尤其是深度学习技术,已经被广泛应用于医学影像的分析和诊断。为了训练这些模型,需要大量的高质量标注数据。下面我会给出一个简单的示例流程,介绍如何收集、整理和准备医学影像数据集,并提供一些基础的Python代码示例。数据收集首先,你需要收集包含医学影像的数据集。这些数据通常来自医院或研究机构,并且需要经过伦理审查和患者同意。示例数据集假设我们有一个包含肺部X光片的数据集,
- 【图像去雾】基于多尺度Retinex实现图像去雾附Matlab代码
Matlab科研辅导帮
图像处理matlab开发语言
✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍1.引言雾霾天气严重影响了人们的生活和工作,对图像的清晰度也造成了极大的破坏。图像去雾技术旨在消除图像中的雾霾,恢复图像的真实色彩和细节,在交通监控、遥感成像、医学影像等领域具有广泛的应用价值。近年来,基于Retinex理论的图像去雾方法取得了
- 计算机视觉算法实战——图像配准(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.领域简介图像配准(ImageRegistration)是计算机视觉中的一个重要研究方向,旨在将两幅或多幅图像在空间上对齐。这些图像可能来自不同的传感器、不同的时间或不同的视角。图像配准在医学影像、遥感、自动驾驶、机器人导航等领域有着广泛的应用。其核心目标是通过几何变换(如平移、旋转
- VLRMBench :一个涵盖数学推理、幻觉理解、多图像理解等多种任务的视觉-语言奖励模型基准测试数据集
数据集
2025-03-10,由上海交通大学和小红书公司联合创建了VLRMBench数据集。是一个专门用于评估视觉-语言奖励模型的综合性基准测试,包含12,634个问题,覆盖数学推理、幻觉理解和多图像理解三大领域。为视觉-语言奖励模型的全面评估提供了新的标准,推动了该领域的发展。一、研究背景近年来,随着大语言模型和大视觉-语言模型的快速发展,它们在多模态任务中取得了显著进展,广泛应用于医学影像、遥感、自动
- 常用图像增强算法原理及 OpenCV C++ 实现
埃菲尔铁塔_CV算法
opencv计算机视觉人工智能c++算法机器学习
一、引言图像增强是数字图像处理中的一个重要分支,其目的是改善图像的视觉效果,突出图像中的重要信息,或者将图像转换为更适合人或机器分析处理的形式。在实际应用中,图像增强技术广泛应用于医学影像、遥感图像、安防监控等领域。本文将详细介绍常用的图像增强算法原理,并给出基于OpenCVC++库的实现代码。二、图像增强算法分类图像增强算法可以分为空间域增强和频域增强两大类。空间域增强是直接对图像的像素值进行操
- DeepSeek 医疗大模型微调实战讨论版(第一部分)
Allen_LVyingbo
数智化医院2025健康医疗python人工智能互联网医院算法
DeepSeek医疗大模型微调实战指南第一部分DeepSeek作为一款具有独特优势的大模型,在医疗领域展现出了巨大的应用潜力。它采用了先进的混合专家架构(MoE),能够根据输入数据的特性选择性激活部分专家,避免了不必要的计算,极大地提高了计算效率和模型精度。这种架构使得DeepSeek在处理大规模医疗数据时,能够更加高效地提取关键信息,为医疗决策提供有力支持。例如,在分析海量的医学影像数据时,De
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 深度学习算法模型:从原理到未来
YDH_AlwaysRunning
深度学习
近年来,人工智能(AI)技术以前所未有的速度改变着人类生活,而深度学习的崛起无疑是这场技术革命的核心驱动力。从手机中的语音助手到医学影像的智能诊断,从自动驾驶汽车到生成式AI创作的诗歌和画作,深度学习算法模型正逐渐渗透到社会的每个角落。本文将从基本原理出发,解析典型模型的运作机制,探讨其应用现状与发展趋势,带您全面认识这一改变世界的技术。一、深度学习的基本原理:让机器学会"思考"1.1神经网络的生
- 基于yolov8的糖尿病视网膜病变严重程度检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的糖尿病视网膜病变严重程度检测系统基于YOLOv8的糖尿病视网膜病变严重程度检测系统是一款利用深度学习技术,专为糖尿病视网膜病变早期诊断设计的智能辅助工具。该系统采用YOLOv8目标检测模型,结合经过标注和处理的医学影像数据集,能够高效且准确地检测并分类糖尿病视网膜病变的不同严重程度。YOLOv8模型以其高速和高精度的特点,在处理眼底图像时展现了强大的能力。通过优化模型
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- 联邦学习与边缘模型优化赋能医疗诊断新路径
智能计算研究中心
其他
内容概要在医疗诊断智能化进程中,数据隐私保护与模型效能提升的双重需求催生出技术创新范式。联邦学习框架通过分布式模型训练机制,有效破解医疗机构间的数据壁垒,使跨机构的医学影像、病理数据在不离开本地服务器的前提下完成知识共享。与此同时,边缘计算节点部署将模型推理能力延伸至诊疗终端,CT影像实时分析响应时间缩短62%,显著提升急诊场景下的决策效率。建议医疗机构在部署联邦学习系统时,优先采用差分隐私与同态
- 联邦学习优化驱动医疗诊断新突破
智能计算研究中心
其他
内容概要医疗人工智能的发展长期面临数据孤岛与隐私合规的双重挑战,传统集中式训练模式难以满足多机构协作需求。联邦学习技术通过构建分布式训练框架,使医疗机构在不共享原始数据的前提下,实现跨域模型的协同优化。这一技术突破为医学影像识别、病理特征分析等场景提供了新的技术路径,特别是在肿瘤筛查领域,通过迁移学习实现跨病种知识迁移,配合超参数自动调优机制,可使模型在有限标注数据下达到95%以上的病灶识别准确率
- Python进行简单医学影像分析的示例
go5463158465
python深度学习算法python开发语言
以下是一个使用Python进行简单医学影像分析的示例,这里我们以常见的DICOM格式医学影像为例,使用pydicom库读取DICOM文件,使用matplotlib进行影像显示,使用scikit-image进行简单的影像处理。需求复现讲解1.安装必要的库在进行医学影像分析之前,需要安装几个必要的Python库:pydicom:用于读取和处理DICOM格式的医学影像文件。matplotlib:用于显示
- 【深度学习】Unet的基础介绍
牧歌悠悠
深度学习人工智能算法深度学习人工智能U-net
U-Net是一种用于图像分割的深度学习模型,特别适合医学影像和其他需要分割细节的任务。如图:Unet论文原文为什么叫U-Net?U-Net的结构像字母“U”,所以得名。它的结构由两个主要部分组成:下采样(编码器):图像逐渐被缩小并且提取特征。上采样(解码器):逐渐恢复图像的尺寸,并通过“跳跃连接”将高分辨率的特征与低分辨率的特征结合,以保持细节。网络结构U-Net通常包括以下几部分:(1)下采样(
- 图像检测分析难题?三维天地引入YOLO目标检测技术带来全新解决方案!
资讯分享周
YOLO目标检测人工智能
在当今的检验检测认证行业,利用图像检测技术分析样本的相关指标已经成为众多检验检测领域的重要需求。无论是医学影像诊断、材料科学、食品检测还是质量控制,都依赖于精确的图像分析来提高检测的效率和准确性。然而,传统的图像处理方法面临着诸多挑战,如庞大的数据量、复杂的特征提取、漫长的模型训练周期以及复杂的公式计算等。这些问题不仅限制了检测的效率,还对结果的准确性产生了负面影响。一、实际业务操作中的工作难点1
- 代理IP助力AI图像处理,开启行业新篇章
傻啦嘿哟
关于代理IP那些事儿人工智能tcp/ip图像处理
目录一、代理IP技术简介二、代理IP在AI图像处理中的应用1.提升数据访问速度2.增强数据处理能力3.突破网络限制三、代理IP在AI图像处理中的实际案例案例一:AI图像生成软件案例二:AI动画创作四、代理IP技术的未来展望五、结语在科技日新月异的今天,AI图像处理技术以其广泛的应用前景和强大的处理能力,正深刻改变着我们的世界。从人脸识别、自动驾驶到医学影像分析,AI图像处理技术无处不在,发挥着不可
- TotalSegmentator:一站式医学影像分割工具
柯江同
TotalSegmentator:一站式医学影像分割工具TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目基础介绍及编程语言TotalSegmentator是一个强
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 智能图像处理平台:技术融合与实践的结晶
顾北辰20
智能图像处理平台图像处理人工智能
目录项目目标项目功能用户模块图像处理模块异步任务模块技术栈数据库设计核心功能实现方式图片上传图片处理异步任务项目扩展近日DeepSeek很火,我让他给我出了个小项目练练手,带大家一起做一下,可做为毕业设计参考。在当今数字化时代,图像处理技术广泛应用于各个领域,从医学影像到社交媒体,其重要性不言而喻。本文将介绍一个智能图像处理平台的练手项目,旨在巩固Java、MySQL、SpringBoot、Red
- 景联文科技医疗数据处理平台:强化医疗数据标注与管理,推动医疗数字化新篇章
景联文科技
科技
随着医疗科技快速进步与广泛应用,医疗信息的规模正在迅速扩张,如何有效管理这些医疗数据成为了关键议题。医疗数据不仅包括传统的纸质病历,还有电子病历、实验室检测结果、医学影像等多样化的数字信息。为确保这些数据能为临床决策、科研分析和患者护理提供有力支持,需要由具备专业知识的医学专家来进行处理。景联文科一站式医疗数据处理平台,旨在为医生提供高效、准确的数据标注工具,有效支持医生进行高质量标注工作。景联文
- DICOM标准详解
浩瀚之水_csdn
三维图像dcm
DICOM(DigitalImagingandCommunicationsinMedicine)标准是医学图像和相关信息的数字图像通信的国际标准。以下是DICOM标准的详细内容:一、概述DICOM标准由医学图像处理和通信的专业组织DICOM标准委员会(DICOMStandardsCommittee)负责维护和更新。它定义了医学影像设备(如X射线、CT扫描、MRI等)生成、存储、传输和显示的规范,以
- 如何使用DeepSeek训练模型
LCG元
大模型人工智能
目录准备工作硬件要求软件环境数据收集与预处理数据收集数据预处理模型构建与训练模型构建模型训练模型评估与调优评估指标调优方法部署与应用部署方式应用集成✍️相关问答DeepSeek模型在医疗领域的具体应用案例有哪些?临床辅助诊疗:医患关系的连接桥梁:医疗科研的学术助手:医疗服务体系革新:医学影像诊断:药物研发:基层医疗能力提升:医疗机器人智能化:如何利用DeepSeek进行多模态数据分析?脑图使用De
- 医学影像中缩写如CR、DR、DX、CT医疗术语意义
wangnaisheng
DICOMdicom
医疗术语解释:DigitalRadiography(CR,DX):数字X线摄影Mammography(MG):乳房X射线照相术ComputedTomography(CT):计算机断层扫描MagneticResonance(MR):磁共振PositronEmissionTomographyPET-CT(PT):正电子发射计算机断层扫描PET-CTUltrasonography(US,IVUS):超声
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源