- Synergizing RAG and Reasoning: A Systematic Review-RAG与推理能力深度结合-新方向
数据分析能量站
机器学习人工智能
欢迎关v:数据分析能量站0论文小结一、研究背景与核心问题大语言模型(LLM)在处理复杂任务时面临两大瓶颈:知识局限性:纯LLM存在“知识幻觉”(编造事实)和“领域知识缺口”;推理浅度:传统检索增强生成(RAG)仅通过关键词匹配获取信息,无法处理多跳推理、语义歧义等复杂需求。核心主张:RAG与推理的深度整合(RAG+Reasoning)是突破上述瓶颈的关键,通过“检索提供实时知识,推理赋予逻辑能力”
- 院级医疗AI管理流程—基于数据共享、算法开发与工具链治理的系统化框架
Allen_Lyb
医疗高效编程研发人工智能算法时序数据库经验分享健康医疗
医疗AI:从“单打独斗”到“协同共进”在科技飞速发展的今天,医疗人工智能(AI)正以前所未有的速度改变着传统医疗模式。从最初在影像诊断、临床决策支持、药物发现等单一领域的“单点突破”,医疗AI如今已迈向“系统级协同”的新阶段。曾经,医疗AI的应用多集中在某一特定环节,比如利用深度学习算法分析医学影像,辅助医生进行疾病诊断。这种单点突破式的应用虽然在一定程度上提高了医疗效率,但随着医疗行业对AI技术
- 【数据结构与算法】力扣 88. 合并两个有序数组
秀秀_heo
数据结构与算法leetcode算法职场和发展
题目描述88.合并两个有序数组给你两个按非递减顺序排列的整数数组nums1**和nums2,另有两个整数m和n,分别表示nums1和nums2中的元素数目。请你合并nums2**到nums1中,使合并后的数组同样按非递减顺序排列。注意:最终,合并后数组不应由函数返回,而是存储在数组nums1中。为了应对这种情况,nums1的初始长度为m+n,其中前m个元素表示应合并的元素,后n个元素为0,应忽略。
- python--自动化的机器学习(AutoML)
Q_ytsup5681
python自动化机器学习
自动化机器学习(AutoML)是一种将自动化技术应用于机器学习模型开发流程的方法,旨在简化或去除需要专业知识的复杂步骤,让非专家用户也能轻松创建和部署机器学习模型**[^3^]。具体介绍如下:1.自动化的概念:自动化是指使设备在无人或少量人参与的情况下完成一系列任务的过程。这一概念随着电子计算机的发明和发展而不断进化,从最初的物理机械到后来的数字程序控制,再到现在的人工智能和机器学习,自动化已经渗
- 面试高频题 力扣 130. 被围绕的区域 洪水灌溉(FloodFill) 深度优先遍历(dfs) 暴力搜索 C++解题思路 每日一题
Q741_147
C/C++每日一题:从语法到算法面试leetcode深度优先c++洪水灌溉
目录零、题目描述一、为什么这道题值得你花时间掌握?二、题目拆解:提取核心关键点三、解题思路:从边界入手,反向标记四、算法实现:深度优先遍历(DFS)+两次遍历五、C++代码实现:一步步拆解代码拆解时间复杂度空间复杂度七、坑点总结八、举一反三九、总结零、题目描述题目链接:被围绕的区域题目描述:示例1:输入:board=[[“X”,“X”,“X”,“X”],[“X”,“O”,“O”,“X”],[“X”
- 2007. 从双倍数组中还原原数组
【算法题解析】还原双倍数组—从打乱的数组恢复原数组题目描述给定一个整数数组changed,该数组是通过对一个原始数组original的每个元素乘以2并打乱顺序后得到的。你的任务是判断给定的changed是否为某个original数组的双倍数组,并返回该原数组。具体来说,存在一个数组original,使得对original中的每个元素x,changed中都包含x和2*x两个元素(顺序可能被打乱)。如
- 氧券app邀请码怎么获取?氧券原始邀请码是什么?
柚子导师
氧券app邀请码怎么获取?氧券原始邀请码是什么?氧券一个优惠券类APP这是氧券针对我们所有蜜粉伙伴提供的免单福利,在我们的【新人1分购专区】即可领取免单福利。氧券邀请码:222222返点已开到最高!填错不负责,切记填对氧券版邀请码:222222,如图所示,不要搞错了;(填写额外提成哦氧券账号返利提现:我们自己购买或者分享出去的产品,我们获得返利(商家给的推广费),这个会在我们的订单明细可查看,当确
- Extreme values modelling 绪论
Liam_ml
极端值建模和估算是各种应用领域的重要挑战,例如环境,水文,金融,精算科学。样本的极端部分可能非常重要。也就是说,它可能表现出更大的潜在风险,例如高浓度的空气污染物,洪水,极端索赔规模。一般而言,极端之建模有三个方面:UnivariateExtremeValueTheory:单变量极值理论。BivariateExtremeValueTheory:双变量极值理论MultivariateExtremeV
- 2018-01-23
Amybubu
“脱单不脱皮,脱贫不脱水,脱脂不脱色”,凡士林吾皇限量版礼盒简直是讲出了我的心声。神马前任的渣男,都不及吾皇带给妾身“一本正经的闭月羞花”!心动的美妞们,还不趁着汪年优惠的脚步,随Amy一同去最靠谱的凡士林天猫旗舰店剁手拔草666!~
- 最新1区9+非肿瘤纯生信,逻辑清晰易懂,机器学习筛选关键基因的纯生信也可以发高水平期刊,抓紧上车!
生信小课堂
影响因子:9.186关于非肿瘤生信,我们也解读过很多,主要有以下类型1单个疾病WGCNA+PPI分析筛选hub基因2单个疾病结合免疫浸润,热点基因集,机器学习算法等。3两种相关疾病联合分析,包括非肿瘤结合非肿瘤,非肿瘤结合肿瘤或者非肿瘤结合泛癌分析4基于分型的非肿瘤生信分析5单细胞结合普通转录组生信分析目前非肿瘤生信发文的门槛较低,欢迎大家!研究概述:本研究首先使用R语言在三个基因表达数据集中找到
- 聚众识别漏检难题?陌讯多尺度检测实测提升 92%
一、开篇痛点:复杂场景下的聚众识别困境在安防监控、大型赛事等场景中,实时聚众识别是保障公共安全的核心技术。但传统视觉算法常面临三大难题:一是密集人群重叠导致小目标漏检率超30%,二是光照变化(如夜间逆光)引发误报率飙升,三是复杂背景干扰下实时性不足(FPS<15)。某景区监控项目曾反馈,开源模型在节假日人流高峰时,因漏检导致预警延迟达20秒,存在严重安全隐患。这些问题的根源在于传统算法的局限性:单
- BeyondCompare绿色破解版,文件对比神器
我天哪
鸡哥今天分享的这个绿色软件BeyondCompare能够对比两个看起来一样的文件的不同支持,就是一个文件对比工具,能够对比出两个文件的每一个字节的不同之处并且用不同颜色加以标注,使用起来非常方便,还能制定规则!本版介绍*基于官方简体中文版便携式制作*绿色便携,无需安装*数据保存至根目录*绿色版可选添加右键资源管理器菜单*单文件无右键扩展*集成专业版永久授权密钥*去主界面首页下方广告横幅*完全禁止自
- 京东不够99如何免运费?京东拒收快递需要承担运费吗?
氧惠导师
在京东商品购物的时候,很多消费者都会考虑运费的问题,因为根据平台的规则,订单金额要达到99元才可以享受免配送费的服务。但并不是每一单都能凑够99元,在不满99元的情况下,怎么操作才能免运费呢?拒收需不需要承担运费?➤推荐网购薅羊毛app“氧惠”,一个领隐藏优惠券+现金返利的平台。氧惠只提供领券返利链接,下单全程都在淘宝、京东、拼多多等原平台,更支持抖音、快手电商、外卖红包返利等。(应用市场搜“氧惠
- 人人皆有神功:AI如何改变程序员的江湖地位?
nbsaas-boot
人工智能大数据
在人类的历史中,每一次技术革命都重新洗牌了社会的力量结构:工业革命带来机器力量的爆发,信息时代成就了程序员的黄金时代。而如今,随着通用人工智能(AGI)和大模型技术的突飞猛进,我们正在步入一个**“人人皆有神功”的AI江湖时代**。当AI成为每个人的智能助手,编程是否还重要?程序员将何去何从?本文将以“武林江湖”的隐喻,探索AI时代的技术平权与社会重构。一、技术平权真的来了吗?过去,程序员之所以被
- Redis面试精讲 Day 3:Redis持久化机制详解
在未来等你
Redis面试专栏Redis面试题持久化RDBAOF数据库缓存
【Redis面试精讲Day3】Redis持久化机制详解文章标签Redis,面试题,持久化,RDB,AOF,数据库,缓存,后端开发,分布式系统文章简述本文是"Redis面试精讲"系列第3天内容,深入解析Redis持久化机制这一面试高频考点。文章从基础概念出发,详细剖析RDB和AOF两种持久化方式的实现原理、触发机制和优缺点对比,提供多语言客户端操作示例和性能测试数据。针对"如何选择持久化策略"、"A
- 淘宝在哪领券?淘宝的品类福利券怎么领?
氧惠购物达人
淘宝领券的步骤如下:领购物大额优惠券、赚返利佣金用氧惠~氧惠APP(带货领导者)——是与以往完全不同的抖客+淘客app!2023全新模式,我的直推也会放到你下面。主打:带货高补贴,深受各位带货团队长喜爱(每天出单带货几十万单)氧惠是公认的返利最好用的软件。注册即可享受高补贴+0撸+捡漏等带货新体验。氧惠邀请码888999,送万元推广大礼包,教你如何1年做到百万团队。打开淘宝APP,进入首页。在首页
- CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界
AI专题精讲
强化学习人工智能强化学习AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界摘要中等规模的大型语言模型(LLMs),如参数量为7B或13B的模型,在机器翻译(MT)任务中展现出良好性能。然而,它们仍未能达到最先进的传统编码器-解码器翻译模型,或是如GPT-4(OpenAI,2023)等更大规模LLM的表现。在本研究中,我们致力于弥合这一性能差距。我们首先评估了在机器翻译任
- 大型语言模型的智能本质是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力语言模型人工智能自然语言处理
大型语言模型的智能本质是什么基于海量数据的统计模式识别与生成系统,数据驱动的语言模拟系统,其价值在于高效处理文本任务(如写作、翻译、代码生成),而非真正的理解与创造大型语言模型(如GPT-4、Claude等)的智能本质可概括为基于海量数据的统计模式识别与生成系统,其核心能力源于对语言规律的深度学习,但缺乏真正的理解与意识。以下从本质特征、技术机制、典型案例及争议点展开分析:一、智能本质的核心特征统
- Python 算法基础篇之线性搜索算法:顺序搜索、二分搜索
挣扎的蓝藻
Python算法初阶:入门篇python算法开发语言
Python算法基础篇之线性搜索算法:顺序搜索、二分搜索引用1.顺序搜索算法2.二分搜索算法3.顺序搜索和二分搜索的对比a)适用性b)时间复杂度c)前提条件4.实例演示实例1:顺序搜索实例2:二分搜索总结引用在算法和数据结构中,搜索是一种常见的操作,用于查找特定元素在数据集合中的位置。线性搜索算法是最简单的搜索算法之一,在一组数据中逐一比较查找目标元素。本篇博客将介绍线性搜索算法的两种实现方式:顺
- 【算法】哈希映射(C/C++)
摆烂小白敲代码
哈希算法算法c语言c++数据结构
目录算法引入:算法介绍:优点:缺点:哈希映射实现:mapunordered_map题目链接:“蓝桥杯”练习系统解析:代码实现:哈希映射算法是一种通过哈希函数将键映射到数组索引以快速访问数据的数据结构。它的核心思想是利用哈希函数的快速计算能力,将键(Key)转换为数组索引,从而实现对数据的快速访问和存储。哈希映射在现代软件开发中非常重要,它提供了高效的数据查找、插入和删除操作。算法引入:小白算法学校
- 计算机视觉算法实战——关键点检测
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言关键点检测(KeypointDetection)是计算机视觉领域中的一个重要研究方向,旨在从图像或视频中检测出具有特定语义信息的关键点。这些关键点通常代表了物体的特定部位或特征,例如人体的关节、面部特征点、车辆的轮子等。关键点检测在姿态估计、动作识别、目标跟踪、三维重建等任务中
- 博弈算法
有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够取胜。(一)巴什博奕(BashGame):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。显然,如果n=m+1,那么由于一次最
- AI 浪潮下的锚与帆:工程师文化的变与不变 | 架构师夜生活
腾讯云开发者
人工智能
目录:一、那些让程序员焦虑的"假消息"二、我们理解的工程师文化三、AI到底改变了什么四、程序员需要学什么新技能五、80后程序员vs00后程序员六、最好的时代永远在前方引言公司食堂里,一个产品经理和一个程序员正在讨论一个让行业都焦虑的话题:"AI来了,你们程序员还有什么用?我直接对着机器说需求,它就能给我做出来,我还要你干嘛?你还要给我排期!"产品经理显得有些得意。"你对它说的话它听得懂吗?它生成的
- STL 简介(标准模板库)
前言通过对C++的特性,类和对象的学习和C++的内存管理对C++基本上有了全面的认识,但是C++的核心在于STL一、STL简介什么是STLC++STL(StandardTemplateLibrary,标准模板库)是C++编程语言中一个功能强大的模板库,它提供了一系列通用的数据结构和算法。STL的设计基于泛型编程,这意味着它使用模板来编写独立于任何特定数据类型的代码。STL的核心组件包括容器(如向量
- C++博弈论
善良的小乔
博弈c++算法开发语言
C++中的博弈算法主要用于解决两人对弈或多方博弈中的策略问题,常用于解决在棋类、卡牌、游戏等情景下的最优策略。这类算法通常基于数学博弈论,重点在于模拟玩家的策略选择并寻找最优解。下面将逐步介绍博弈算法的基本思想、常用算法以及具体实现思路。一、博弈算法的基本思想博弈算法的核心在于状态空间搜索,通过模拟玩家的所有可能动作,推导出局面评价和策略选择,常见特性包括:零和博弈:一个玩家的得分增加意味着另一个
- 工服误检率高达40%?陌讯改进YOLOv7实战降噪50%
2501_92487859
YOLO算法视觉检测目标检测计算机视觉
开篇痛点:工业场景的视觉检测困境在工地、化工厂等高危场景,传统视觉算法面临三重挑战:环境干扰:强光/阴影导致工服颜色失真目标微小:安全帽反光标识仅占图像0.1%像素遮挡密集:工人簇拥时漏检率超35%(数据来源:CVPR2023工业检测白皮书)行业真相:某安监部门实测显示,开源YOLOv5在雾天场景误报率高达41%技术解析:陌讯算法的三大创新设计1.多模态特征融合架构#伪代码示例:可见光+红外特征融
- 渣土车识别漏检率高?陌讯算法实测降 90%
2501_92487936
目标跟踪人工智能计算机视觉目标检测算法智慧城市
在城市建筑垃圾运输管理中,渣土车的合规性监测一直是行业痛点。传统视觉算法在复杂工况下常常出现误判——阴雨天车牌识别模糊、夜间车灯眩光导致车型误分类、不同品牌渣土车混检时准确率骤降。某市政管理局的统计显示,采用传统方案时,日均漏检率高达23%,由此引发的违规倾倒投诉占比超60%。技术解析:从单模态到多特征融合的突破传统渣土车识别多依赖单一目标检测模型(如FasterR-CNN),其核心缺陷在于:特征
- 路面裂缝漏检率高?陌讯多尺度检测降 30%
2501_92487936
计算机视觉opencv人工智能深度学习算法目标检测
在市政工程与公路养护领域,路面裂缝检测是保障交通安全的关键环节。传统人工巡检不仅效率低下(日均检测≤50公里),且受主观因素影响漏检率高达15-20%[1]。而主流开源视觉算法在面对阴影干扰、多类型裂缝混杂等场景时,往往陷入"精度与速度不可兼得"的困境。本文将结合实战案例,解析陌讯视觉算法在路面裂缝检测中的技术突破与落地经验。一、技术解析:从传统方法到多模态融合架构传统裂缝检测多采用"边缘检测+形
- 考场/工厂违规用机难捕捉?3维度优化方案部署成本直降40%
2501_92487762
视觉检测计算机视觉算法目标检测
开篇痛点工业场景中传统玩手机识别面临三重挑战:小目标检测(手机平均像素占比<0.5%)、遮挡干扰(人手/物体遮挡率超60%)、实时性要求(需200ms内响应)。某安检企业反馈,开源YOLOv5在车间场景误报率高达34%。技术解析:双流特征融合架构陌讯算法创新性融合双路径特征(图1):#陌讯核心代码逻辑(简化版)defdual_path_fusion(backbone):shallow_path=C
- 复杂场景检测失效?陌讯多模态算法在千万级监控网的落地实战
2501_92473061
算法视觉检测安全计算机视觉
开篇痛点:安防监控的检测困境"明明人就在画面里,系统却毫无反应!"——这是某智慧园区安防负责人的吐槽。传统目标检测模型在安防监控场景面临三大死穴:漏报:夜间、遮挡场景下召回率骤降(实测ResNet50漏报率>40%)误报:树叶晃动、光影变化引发的误报占比超35%延迟:1080P视频流检测延迟普遍>100ms,难以满足实时响应需求技术解析:陌讯算法的三阶优化架构陌讯视觉算法采用多模态特征金字塔(MM
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟