分别采用GPU、CPU对图像进行sobel滤波处理
#include
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include
#include
#include
#include
#define BLOCK_SIZE 1
//图像卷积 GPU
__global__ void sobel_gpu(unsigned char* in, unsigned char* out, const int Height, const int Width)
{
int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y + blockIdx.y + threadIdx.y;
int index = y * Width + x;
int Gx = 0;
int Gy = 0;
unsigned char x0, x1, x2, x3, x4, x5, x6, x7, x8;
if (x>0 && x<(Width-1) && y>0 && y<(Height-1))
{
x0 = in[(y - 1)*Width + (x - 1)];
x1 = in[(y - 1)*Width + (x)];
x2 = in[(y - 1)*Width + (x + 1)];
x3 = in[(y)*Width + (x - 1)];
x5 = in[(y)*Width + (x + 1)];
x6 = in[(y + 1)*Width + (x - 1)];
x7 = in[(y + 1)*Width + (x)];
x8 = in[(y + 1)*Width + (x + 1)];
Gx = (x0 + 2 * x3 + x6) - (x2 + 2 * x5 + x8);
Gy = (x0 + 2 * x1 + x2) - (x6 + 2 * x7 + x8);
out[index] = (abs(Gx) + abs(Gy)) / 2;
}
}
//Sobel滤波 CPU实现
void sobel_cpu(cv::Mat srcImg, cv::Mat dstImg, int Height, int Width)
{
int Gx = 0;
int Gy = 0;
for (int i = 1; i < Height - 1; i++)
{
unsigned char* dataUp = srcImg.ptr<unsigned char>(i - 1);
unsigned char* data = srcImg.ptr<unsigned char>(i);
unsigned char* dataDown = srcImg.ptr<unsigned char>(i + 1);
unsigned char* out = dstImg.ptr<unsigned char>(i);
for (int j = 1; j < Width - 1; j++)
{
Gx = (dataUp[j + 1] + 2 * data[j + 1] + dataDown[j + 1]) - (dataUp[j - 1] + 2 * data[j - 1] + dataDown[j - 1]);
Gy = (dataUp[j - 1] + 2 * dataUp[j] + dataUp[j + 1]) - (dataDown[j - 1] + 2 * dataDown[j] + dataDown[j + 1]);
out[j] = (abs(Gx) + abs(Gy)) / 2;
}
}
}
int main()
{
cv::Mat src;
src = cv::imread("photo16.jpg");
cv::Mat grayImg,gaussImg;
cv::cvtColor(src, grayImg, cv::COLOR_BGR2GRAY);
cv::GaussianBlur(grayImg, gaussImg, cv::Size(3,3), 0, 0, cv::BORDER_DEFAULT);
int height = src.rows;
int width = src.cols;
//输出图像
cv::Mat dst_gpu(height, width, CV_8UC1, cv::Scalar(0));
//GPU存储空间
int memsize = height * width * sizeof(unsigned char);
//输入 输出
unsigned char* in_gpu;
unsigned char* out_gpu;
cudaMalloc((void**)&in_gpu, memsize);
cudaMalloc((void**)&out_gpu, memsize);
dim3 threadsPreBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 blocksPreGrid((width + threadsPreBlock.x - 1)/threadsPreBlock.x, (height + threadsPreBlock.y - 1)/threadsPreBlock.y);
cudaMemcpy(in_gpu, gaussImg.data, memsize, cudaMemcpyHostToDevice);
sobel_gpu <<<blocksPreGrid, threadsPreBlock>>> (in_gpu, out_gpu, height, width);
cudaMemcpy(dst_gpu.data, out_gpu, memsize, cudaMemcpyDeviceToHost);
//cudaDeviceSynchronize();
//输出图像
cv::Mat dst_cpu(height, width, CV_8UC1, cv::Scalar(0));
sobel_cpu(gaussImg, dst_cpu, height, width);
cv::imwrite("dst_cpu_save.png", dst_cpu);
cv::imwrite("dst_gpu_save.png", dst_gpu);
//cv::namedWindow("src", cv::WINDOW_NORMAL);
cv::imshow("src", src);
//cv::namedWindow("dst_cpu", cv::WINDOW_NORMAL);
cv::imshow("dst_cpu", dst_cpu);
//cv::namedWindow("dst_gpu", cv::WINDOW_NORMAL);
cv::imshow("dst_gpu", dst_gpu);
cv::waitKey();
cudaFree(in_gpu);
cudaFree(out_gpu);
return 0;
}