- 人脸识别常用数据集和Loss
JL_Jessie
人脸识别深度学习
人脸识别数据集数据集的noise对训练效果的影响很大!很长一段时间MegaFace的效果都上不去,就是因为数据集噪声的原因。而且自己在训练人脸的时候,如果不对数据集的噪声和属性有一点了解,对训练结果可能会有误判,甚至越训练越差…在选择数据集的时候不要一味求大,有的时候选择一个noise比例极高的大数据集,效果还不如选择一个clean的小数据集呢,可以参见这篇论文TheDevilofFaceReco
- NeRF-Pytorch:NeRF神经辐射场复现——Pytorch版全流程分析与测试【Ubuntu20.04】【2025最新版!!!】
那就举个栗子!
三维重建计算机视觉人工智能
一、引言在计算机视觉和计算机图形学的交叉领域中,视图合成(ViewSynthesis)一直是一个充满挑战的研究方向。传统的三维重建方法往往需要复杂的几何建模和纹理映射过程,而且在处理复杂光照和材质时效果有限。2020年,来自UCBerkeley的研究团队提出了NeuralRadianceFields(NeRF),这一革命性的方法彻底改变了我们对三维场景表示和渲染的理解。NeRF的核心思想是将三维场
- InfluxDB 3 Core 持久化机制深度解析:高可靠实时数据引擎的设计哲学与工业实践
梦想画家
数据库InfluxDB分层持久化架构
本文深入拆解InfluxDB3Core的数据持久化架构,涵盖写入流程、故障恢复、存储引擎设计,并结合物联网、金融监控等场景分析其高可靠性实现逻辑。通过对比传统时序数据库架构与性能实测数据,揭示新一代引擎如何平衡实时性与数据安全性,为大规模时序数据处理提供生产级保障。一、持久化核心机制:从写入到落盘的全链路保护1.分层持久化架构InfluxDB3Core采用三级数据保护策略:写入请求→内存缓冲区(V
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- 【Rust + Actix Web】现代后端开发:从零构建高并发 Web 应用
LCG元
前端rust前端开发语言
目录项目概述环境准备项目创建与依赖配置系统架构设计核心代码实现1.数据库模型(`src/models.rs`)2.应用状态管理(`src/state.rs`)3.核心业务逻辑(`src/handlers.rs`)4.主应用入口(`src/main.rs`)高并发优化策略1.异步处理模型2.连接池配置优化3.缓存策略设计性能测试结果部署方案Docker部署配置(`Dockerfile`)Kubern
- python采集淘宝评论,API接口丨json数据示例参考
ID_18007905473
APIpython大数据jsonpython
在Python中采集淘宝商品评论数据,通常需要通过淘宝开放平台提供的API接口来实现。然而,淘宝开放平台并没有直接提供公开的评论API接口,因此需要通过其他方式间接获取评论数据。以下是一个使用Python通过网页爬虫技术获取淘宝商品评论数据的示例。请注意,这个示例仅用于学习和研究目的,请确保遵守淘宝的使用条款和相关法律法规。示例代码importrequestsfrombs4importBeauti
- Python采集淘宝商品评论API接口概述,json格式数据参考
ID_18007905473
pythonAPIpythonjson前端
一、淘宝商品评论API接口概述淘宝开放平台提供了taobao.item.reviews.get接口,用于获取指定商品的评论数据。该接口支持分页查询、多条件筛选(如时间范围、评分等级)和自定义返回字段,适用于电商数据分析、竞品研究和用户行为洞察等场景。核心功能:分页获取评论:支持通过page_no和page_size参数控制返回数据的分页。多维度筛选:可按时间范围(start_date、end_da
- 第一章 城镇道路工程 1.5 安全质量控制
泽克
一建市政章节复习笔记
1.5城镇道路工程安全质量控制1.5.1城镇道路工程安全技术要点1.管线及邻近建筑物的保护1.管线的保护取得详细资料,设施管理单位向施工、监理进行详细交底研究确定拆迁或保护加固方案、形成文件施工前进行详探,人工开挖探沟,结构以下先施工。施工现场做好标识、施工图做好标志加固部位定期检查、维护。专人监护2.邻近建筑物的保护施工前调查,获取相关数据。采取合理的施工方案和加固措施设置沉降、位移观察点,2.
- 浅谈新能源与计算机
萝萝仔
笔记能源计算机新能源
最刚开始听到老师说让谈新能源跟计算机的关系的时候,我是感觉怎么这两者完全扯不上什么联系,根本就是两个不同领域啊。后来想着计算机本身也是需要能源支撑着的,这不就是联系所在,而且就我现在的专业——计算机系统结构而言,现在越来越多的研究想要做到计算机的能耗与效率的负载均衡,从体系结构层次、软件层次、算法层次,都是想要尽量节约计算机的能源。再后来想着我本科的专业——物联网工程,其实就是提倡物物相连的一个概
- 当语言模型”思考”时,它真的在推理吗?
qq_502428990
语言模型人工智能自然语言处理
最近,每当我看到ChatGPT一步步”推导”数学题,或是Claude条理分明地分析哲学问题时,总忍不住想起图灵测试那个古老的命题:我们是否又一次被表象迷惑了?这些看似严谨的推理过程,到底是一场精妙的模仿秀,还是真正智能的曙光?1.被误解的”思考者”走进任何科技论坛,你都能看到人们对GPT-4解题过程的惊叹:”看这一步一步的推导,它简直像人类一样在思考!”但作为一个长期观察语言模型的研究者,我不得不
- jmeter中变量的作用范围_Jmeter 的变量类型和作用域
weixin_39789525
jmeter中变量的作用范围
Jmeter的有多种变量类型,有其各自的作用域。有时候不小心就会使它们之间相互冲突或者覆盖,本文梳理各种类型变量的生成方法、使用特点、作用范围。目录变量类型Jmeter中的变量分别有以下几种:UserDefinedVariablesUserParameters属性Properties运行中创建的变量我们分开单独研究各自的特点。UserDefinedVariables(UDV)UserDefined
- 设计的“第一性原理”:从Photoshop与Premiere Pro的AI革新谈起
最近有机会深入体验了一套来自英国ParvisSchoolofEconomicsandMusic的Adobe正版教育订阅,在把玩研究CreativeCloud全家桶的过程中,确实挖到了一些宝贝,感触颇深,忍不住想立刻和大家聊聊。先简单说下这套订阅给我的直观感受:它的FireflyAI积分是我见过最慷慨的,每周足足有1500点;授权设备数也达到了4台,可惜我囊中羞涩,并没有那么多设备去一一验证。最让我
- Pytest自动化测试执行环境切换的两种解决方案
测试老哥
pytest测试工具python软件测试自动化测试测试用例职场和发展
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快在实际企业的项目中,自动化测试的代码往往需要在不同的环境中进行切换,比如多套测试环境、预上线环境、UAT环境、线上环境等等,并且在DevOps理念中,往往自动化都会与Jenkins进行CI/CD,不论是定时执行策略还是迭代测试,那么问题来了,难道每次切换环境都需要提供一套测试代码?或者每次切换都要需修改我们的自动化环境配置?答案当然不是,
- 打造连贯性:如何通过过渡句提升论文的逻辑流畅性
学境思源AcademicIdeas
AI写作ChatGPT学境思源chatgpt人工智能
在学术写作中,逻辑连贯性是衡量论文质量的重要标准之一。即使论点扎实、数据详实,缺乏连贯性的论文仍可能让读者感到困惑。过渡句作为连接不同段落和章节的重要桥梁,能够有效地提升文章的逻辑流畅性,使内容更加易于理解。今天的内容我们将深入探讨过渡句的重要性,并提供实用技巧和示例,帮助写作者在论文中实现自然过渡,提升整体阅读体验。通过掌握这些方法,作者可以确保其研究成果得到更好的展示和认可。1.过渡句的重要性
- 生成式AI技术对未来知识生产模式的颠覆性影响:跨学科案例分析
德宿
人工智能
引言随着人工智能技术的迅猛发展,生成式AI作为一种革命性技术正在深刻地改变人类知识生产和学术研究的范式。生成式AI不仅能够创建原创内容,还能模拟人类思维过程,处理和生成大量数据,从而在各个学科领域展现出广阔的应用前景。本研究报告旨在深入探讨生成式AI技术对未来知识生产模式的颠覆性影响,通过对比传统学术研究与AI辅助研究的范式差异,并选取医学、法学、文学、经济学和艺术学等五个典型领域进行深度案例分析
- ChatGPT驱动的跨学科研究灵感挖掘指南
学境思源AcademicIdeas
学境思源AI写作ChatGPTchatgpt
跨学科研究已成为解决复杂问题的重要手段。学境思源,无论是人工智能与心理学的结合,一键生成论文初稿!还是生态学与经济学的融合,越来越多的研究者正试图打破学科界限,探索全新问题域。但问题是:acaids.com。我们如何高效发现这些跨学科交叉点?使用传统方式,像文献综述、领域专家访谈或大型头脑风暴虽有效,但耗时,且受限于已有认知。今天为大家分享一种高效、智能、可复制的方法——利用ChatGPT进行跨学
- MiniMax - M1:开源大模型的革命性突破
开源大模型MiniMax-M1研究报告一、引言在人工智能技术飞速发展的当下,大模型领域的竞争愈发激烈。开源大模型以其开放性、可定制性和社区协作的优势,逐渐成为推动人工智能技术进步的重要力量。MiniMax-M1作为全球首个开源大规模混合架构的推理模型,一经发布便引起了广泛关注。它在长上下文处理、推理效率和成本控制等方面展现出了卓越的性能,为人工智能的发展带来了新的思路和方向。本文将对MiniMax
- ss928v100模型的导出、量化和转换
yunken28
python开发语言
1、yolov8导出为onnxfromultralyticsimportYOLOmodel=YOLO("./best.pt")model.export(format="onnx",imgsz=640,dynamic=False,simplify=True,opset=11,batch=1,half=False)以下是model.export()方法各参数的详细解释:format="onnx"指
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- 【Python】PyRoboPath:Python机器人路径规划的终极指南
宅男很神经
python开发语言
PyRoboPath:Python机器人路径规划的终极指南第1部分:PyRoboPath与路径规划基础第1章:PyRoboPath概览与核心理念1.1什么是PyRoboPath?PyRoboPath是一个先进的、开源的Python库,致力于为学术研究人员、行业工程师以及机器人爱好者提供一套完整、高效、易用且可扩展的机器人路径规划解决方案。它不仅仅是一个算法的集合,更是一个集成了机器人建模、环境表示
- 机器人系统导航里程计介绍
Xian-HHappy
机器人机器人人工智能算法里程计
一、引言在移动机器人的研究与应用领域,精准且实时地确定机器人的位置与姿态是实现其自主功能的关键。里程计作为达成这一目标的核心技术之一,在移动机器人的自主导航、路径规划、定位以及地图构建等诸多关键领域扮演着举足轻重的角色。随着机器人技术的持续演进,里程计已蜕变成为移动机器人实现SLAM(同步定位与地图构建)功能的基石。它通过对各类传感器所采集数据的精细计算与处理,运用增量式递推的策略,实时推算出机器
- AI摄像头动捕:精准量化八段锦动作质量,赋能传统功法习练
在追求动作标准度的竞技体育、舞蹈教学或运动康复领域,如何科学、客观、高效地评估动作质量一直是核心挑战。如今,AI摄像头动捕技术的成熟,正为这些领域带来突破性的解决方案,尤其在需要高度专注与准确性的八段锦、太极拳等传统健身功法领域中展现出巨大潜力。AI摄像头动捕系统,通过部署多组高帧率RGB摄像头,在空间中构建一个精密的三维捕捉场域。这种无穿戴动捕(或称无标记点动捕)的方式,让用户无需任何设备束缚人
- 凌晨の3点,线程池竟在服务器里偷偷····
山海上的风
Java服务器java-ee线程池
凌晨の3点,线程池の竟在服务器里偷偷榨干CPU····⚡️CPU:JAVAKing为窝发声,HELPME⚡️JAVAKING今天将揭露线程池的罪恶行为⚡️《线程池:OH,YES》线程池到底对项目做了什么想象一下:每次点外卖都新雇一个厨师,吃完就开除——这就是裸奔线程的日常!在高并发三巨头(电商秒杀、金融交易、大数据处理)中:1️⃣CPU哭诉:90%时间在面试线程,10%干活(线程切换开销)2️⃣
- 最新 抖音 iOS 设备注册算法(配合心跳做不上榜人气用)
qq_1771238069
ios算法cocoa
最新业务需要研究了一周时间做出来了可以配合心跳包做抖音人气用一下部分代码#-*-encoding:utf-8-*-importjson,random,time,sysimportrequestsfromurllib.parseimporturlparse,parse_qsimportratelimitfromloguruimportloggerfromspiders.reg.confimportm
- 小柿子影视安卓版,跨平台开发的技术挑战与解决方案
2501_92530989
音视频百度经验分享其他
在移动应用开发的浪潮中,视频类App因其对性能、用户体验、跨平台兼容性要求高,成为开发者面临的重点技术难题之一。本文将结合实际案例,分析一个典型的视频类项目“小柿子”的跨平台开发过程中的关键技术点。一、背景介绍“小柿子影视”是一款轻量级视频播放App,专注于提供清爽的界面和流畅的播放体验。该项目同时支持小柿子安卓与小柿子iOS两个平台,目标用户覆盖广泛。因此,跨平台开发策略、播放器内核选择、缓存机
- Selenium测试安全策略:防止逆向工程
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构selenium网络tcp/ipai
Selenium测试安全策略:防止逆向工程关键词:Selenium自动化测试、逆向工程、代码安全、敏感信息保护、测试脚本防护摘要:本文从Selenium自动化测试的实际场景出发,深入解析测试脚本面临的逆向工程风险(如敏感信息泄露、测试逻辑被破解),通过生活案例类比技术概念,系统讲解代码混淆、敏感信息加密、日志脱敏等核心安全策略,并提供可落地的实战代码与工具推荐,帮助测试人员构建“防逆向”的安全测试
- 微信支付回调验证实战:构建防伪造请求的3道防火墙
IT莫染
工具及插件#配置SpringBootDemo微信SpringBoot3.2微信支付V3API数据签名防重放攻击
⚡痛点场景当你的电商系统遭遇:黑客伪造支付成功回调→0元订单自动发货重放攻击→单笔交易多次发货中间人篡改金额→1999元订单变成1.99元微信官方数据:未验签的回调接口被攻击概率高达73%安全架构三重防护️核心代码实现(SpringBoot≥3.1,JDK17+)防火墙1:签名验证(关键防伪造)@RestController@RequestMapping("/payment")publicclas
- SD-WAN优化云应用与多云架构访问的关键策略
1.SD-WAN如何优化企业对公有云和SaaS应用的访问?1.1智能流量优化SD-WAN通过应用识别技术,可以根据不同的业务应用流量需求,动态分配网络资源。例如,SD-WAN能够优先为钉钉、企业微信、金山文档等关键SaaS应用分配低延迟、高带宽的链路,确保这些应用的高效运行。动态路径选择:SD-WAN可实时监测网络性能(如延迟、抖动、丢包率),并基于网络状态动态选择访问云服务(如阿里云、腾讯云、华
- 企业级 Java 应用灰度发布设计方案与实践全解析
大手你不懂
JavaJava项目实战微服务-云原生java后端云原生微服务kubernetesistio
引言在当今互联网产品快速迭代的背景下,如何在保证服务稳定性的同时,快速验证新功能的有效性,成为了技术团队面临的重要挑战。灰度发布(CanaryRelease)作为一种重要的发布策略,能够将新版本逐步推向部分用户,在控制风险的同时收集真实用户反馈,已成为企业级Java应用的标配能力。本文将深入探讨灰度发布的核心概念、主流设计方案,并结合行业最佳实践给出具体实现建议。一、灰度发布核心概念1.1灰度发布
- 什么是Sentinel? 以及优点
肘击鸣的百k路
sentinel
Sentinel是阿里巴巴开源的轻量级流量治理与系统保护组件,专注于微服务架构下的实时流量控制、熔断降级和系统稳定性保障。其核心目标是通过动态规则管理防止服务因高并发、突发流量或依赖故障导致雪崩崩溃。⚙️Sentinel的核心功能流量控制基于QPS(每秒请求数)或并发线程数限制资源访问,支持直接拒绝、匀速排队(漏桶算法)、慢启动(令牌桶算法)等策略。细粒度控制:可针对特定接口、方法甚至热点参数(如
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比