中,用② (tr+s-1, tc+s-1); (tr+s, tc+s-1) ; (tr+s, tc+s)。
• 当dr≥tr+s and dc
中,用③(tr+s-1, tc+s-1); (tr+s-1, tc+s) ; (tr+s, tc+s)。
• 当dr≥tr+s and dc≥tc+s时,坏格在右下子棋盘 中,
用④ (tr+s-1, tc+s-1); (tr+s-1, tc+s) ; (tr+s, tc+s-1)。
算法分析
算法设计与描述:
代码:
#include
using namespace std;
int n=8;//需要是2^x
int amount=1;
//棋盘
int CBoard[100][100];
//坏格子坐标
//覆盖之后棋盘
int chessboard[100][100];
//左上角方格所在行int tr,左上角 列int tc, (tr.tc)
//残缺 行int dr,残缺 列int dc (dr,dc )
//棋盘的行数or列数int size)
void CBCover(int CBoard[][100],int tr,int tc,int dr,int dc,int size)
{
if(size<2)return;
int t=amount;
amount++;//所使用的三格板的数目
//二分
int s=size/2;//子问题的棋盘
//残缺方格位于左上棋盘 1号隔板
if(dr=tc+s )
{
//递归
CBCover(CBoard,tr,tc+s,dr,dc,s);
CBoard[tr+s-1][tc+s-1]=t;//覆盖2号三格板
CBoard[tr+s][tc+s-1]=t;
CBoard[tr+s][tc+s]=t;
//覆盖其余部分
CBCover(CBoard,tr,tc,tr+s-1,tc+s-1,s);
CBCover(CBoard,tr+s,tc,tr+s,tc+s-1,s);
CBCover(CBoard,tr+s,tc+s,tr+s,tc+s,s);
}
//残缺方格位于左下棋盘 3号隔板
else if(dr>= tr+s && dc < tc+s )
{
//递归
CBCover(CBoard,tr+s,tc,dr,dc,s);
CBoard[tr+s-1][tc+s-1]=t;//上
CBoard[tr+s-1][tc+s]=t;//右上
CBoard[tr+s][tc+s]=t;//右
//覆盖其余部分
CBCover(CBoard,tr,tc,tr+s-1,tc+s-1,s);
CBCover(CBoard,tr,tc+s,tr+s-1,tc+s,s);
CBCover(CBoard,tr+s,tc+s,tr+s,tc+s,s);
}
//残缺方格位于右下棋盘 4号隔板
else if(dr>=tr+s && dc>=tc+s )
{
//递归
CBCover(CBoard,tr+s,tc+s,dr,dc,s);
CBoard[tr+s-1][tc+s-1]=t;//覆盖2号三格板
CBoard[tr+s-1][tc+s]=t;
CBoard[tr+s][tc+s-1]=t;
//覆盖其余部分
CBCover(CBoard,tr,tc,tr+s-1,tc+s-1,s);
CBCover(CBoard,tr,tc+s,tr+s-1,tc+s,s);
CBCover(CBoard,tr+s,tc,tr+s,tc+s-1,s);
}
}
void output(int a[][100])
{
cout<<"a:"<
选择性问题:——非等分
选最大值、最小值、选中位数、选第二大值
一般性描述:
设A是含有n个元素的集合,从A中选出第k小的元素,其中
1≤k≤n。这里的第k小是指当A中元素从小到大排序之后,
第k个位置的元素,当k=1时,选出的是A中的最小值,当
k=n时,选出的就是最大值。
问题分析:
(1)排序--找第k小的元素,时间渐近复杂度为O(nlogn)——高级排序算法 极限
(2)蛮力算法--当k=1或k=n时【最大或最小】,一趟即可找到解,时间渐近复杂度只有O(n)。
(3)二分治策略--当k=2时,将原数列分为两个子集,每个子 集各选出一个最小值和第二小值,从这个4个数字里可找到当前的最小值
选择性问题 :选第k小值
计算模型
选择pivot=a[left]值,j=right对集合进行二分
(1) j-left=k-1,则分界数据就是选择问题的答案
(2) j-left>k-1,则选择问题的答案继续在左子集中找,问题规模变小了。
(3) j-left
算法分析
(1)最坏情况下的复杂性是O(n 2 ),left 总是为空,第k个元素总是位于 right
子集中。
(2)设n=2 k ,算法的平均复杂性是O (n+logn)。若仔细地选择分界元素,则
最坏情况下的时间开销也可以变成O(n)。
(3)它与本章第一个例子非常相似,只对一半子集进行搜索,所不同的时,
由于pivot点选择的不同,多数情况下它是非等分的。
算法设计与分析
输入
输出
int select(int a[],int left,int right,int k) { int i,j,pivot,t; if(left>=right)return a[left]; i=left; j=right+1; pivot=a[left]; while(true) { do{ i++; } while(a[i] if(i>=j)break; t=a[i]; a[i]=a[j]; a[j]=t; } if(j-left+1==k) return pivot; a[left]=a[j]; a[j]=pivot; if(k<(j-left+1))select(a,left,j-1,k); else select(a,j+1,right,k-j-j+left); }
代码:
#include
using namespace std;
void show(int a[])
{
cout<<"a[]:";
for(int i=0;i<8;i++)
cout<=right) {
cout<<"left>=right a[left]"< pivot);
cout<<"now pivot is "<=j){
cout<<"i>=j break;"<
思考题:正元素 负元素排序
问题分析: 使数组中所有负数位于正数之前,空间效率:原数组的空间不可改变,临时变量尽可能少,在原数组上改变 不增加结果数组。时间效率:运算次数尽可能少。
一定会遍历一遍数组,且每个元素与0进行比较,因此从两侧开始,若左侧小于0 不变,大于0需要后移,右侧大于0不变,小于0需要后移。因此找到两位置left right ,进行交换。再以此为范围进行下一轮递归,直到left>=right 结束递归。
计算模型:
从[left,right]范围内进行二分。
(1)left>=right 结束循环
(2)从left开始找到第一个大于0的元素下标,更新left
(3)从right开始找到第一个小于0的元素下标,更新right
(4)若left>=right 结束循环
(5)否则从新的【left,right】范围进行递归排序
算法设计与分析
算法设计与描述
算法分析
输入:数组a[]
输出:排序后数组
void fun(int a[],int left,int right) { if(left>=right) { return ; } while(a[left]<0) ++left; while(a[right]>0) --right;
if(left { t=a[left]; a[left]=a[right]; a[right]=t; fun(a,left,right); } else return ; }
(1)输入规模n (2)核心语句:比较和交换语句
(3)
时间复杂度 按最坏情况 每交换一次 都只能纠正2个元素的位置,则需要递归n/2次 :
T(n)= T(n-2) + c
=T(n-4) + 2*c
=T(n-6)+3*c
共n/2次 T(n)=O(n)
空间复杂度:则S(n)= n/2 +2;
思考题:用分治法 求 数列的最大子段和
你可能感兴趣的:(算法zxd,算法,动态规划,算法)
Python打卡Day11 常见的调参方式
核心知识:1.模型=算法+实例化设置的外参(超参数)+训练得到的内参2.只要调参就需要考2次所以如果不做交叉验证,就需要划分验证集和测试集,但是很多调参方法中都默认有交叉验证,所以实际中可以省去划分验证集和测试集的步骤基线模型(基准模型):首先运行一个使用默认参数的模型,记录其性能作为比较的基准。超参数调整数据1.网格搜索(GridSearchCV):-需要定义参数的网格(param_grid),
python学智能算法(二十七)|SVM-拉格朗日函数求解上
西猫雷婶
机器学习 人工智能 python学习笔记 支持向量机 python 机器学习 算法 人工智能
【1】引言前序学习进程中,我们已经掌握了支持向量机算法中,为寻找最佳分割超平面,如何用向量表达超平面方程,如何为超平面方程建立拉格朗日函数。本篇文章的学习目标是:求解SVM拉格朗日函数。【2】求解方法【2.1】待求解函数支持量机算法的拉格朗日函数为:L(w,b,α)=12∥w∥2−∑i=1mαi[yi(w⋅xi+b−1)]L(w,b,\alpha)=\frac{1}{2}{\left\|w\rig
【算法-贪心算法-python】柠檬水找零
檀越@新空间
P1 算法与数据结构 s1 Python 算法 贪心算法 python
欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:kuan的首页,持续学习,不断总结,共同进步,活到老学到老导航檀越剑指大厂系列:全面总结java核心技术点,如集合,jvm,并发编程redis,kafka,Spring,微服务,Netty等常用开发工具系列:罗列常用的开发工具,如IDEA,M
【算法】贪心算法——柠檬水找零
题解:柠檬水找零(贪心算法)目录1.题目2.题解3.参考代码4.证明5.总结1.题目题目链接:LINK2.题解分情况讨论+贪心算法当顾客为5元时,收下当顾客为10元时,收下10元并找回5元当顾客为20元时,收下20元并找回10+5元或者5+5+5元这里仅20元时候找钱会有分歧,所以这里我们用贪心算法,即优先留下尽可能多的5元,尽快把10元扔出去。原因:5元是“万金油”,既可以给10元找零,也可以给
Jetson平台编译Tengine
space01
AIoT Jetson 人工智能 深度学习 计算机视觉
1.Tengine简介Tengine于2017年在GitHub(https://github.com/OAID/Tengine)开源,是OPENAILAB(开放智能)推出的自主知识产权的边缘AI计算框架,致力于解决AIoT产业链碎片化问题,加速AI产业化落地。Tengine兼容多种操作系统和深度学习算法框架,简化和加速面向场景的AI算法在嵌入式边缘设备上快速迁移,以及实际应用部署落地,可以十倍提升
函数对象
tal0n
函数对象是STL库提供的除了迭代器,迭代器配接器以外的另外一种概念。简单来说:函数对象提供了一种方法,将要调用的函数与准备传递给这个函数的隐藏参数捆绑在一起。即:该对象实现了operator()的同时还提供了部分执行时的上下文环境。下面我们通过例子来详细看下函数对象。例子STL中有一个find_if的算法实现,他的参数包括:一组表示范围的迭代器,一个用于生成bool类型值的判断式。例如我们需要在一
飞算JavaAI:力臻开发之本真,破 AI 代码之繁琐,传统项目一键生成
微学AI
人工智能 java javaAI
飞算JavaAI:力臻开发之本真,破AI代码之繁琐,传统项目一键生成文章目录飞算JavaAI:力臻开发之本真,破AI代码之繁琐,传统项目一键生成一、前言二、飞算JavaAI是什么?2.1背景与实力2.2飞算JavaAI的“独门绝技”三、飞算JavaAI实战体验3.1IDEA插件安装配置3.2Main中写一个简单的梯度下降算法3.3main函数搭建一个卷积神经网络网络3.4飞算JavaAI:需求分析
短剧小程序的「技术革命」:从「粗放生长」到「精准运营」
weixin_lynhgworld
小程序
随着短剧行业进入「存量竞争」阶段,技术能力正成为小程序的核心竞争力。从内容推荐到用户留存,从广告变现到IP开发,每一环节都需要数据驱动和算法优化。一、智能推荐:让「用户找到剧」变成「剧找到用户」传统短剧平台依赖标签匹配,而小程序通过多维度数据实现精准推荐:「情绪图谱」分析:记录用户观看时的快进、暂停、重复播放等行为,构建情绪波动曲线;「场景化推荐」:根据时间(如深夜)、地点(如地铁)、设备(如手机
深入理解Mysql索引底层数据结构与算法
桑翔
一.索引的本质索引是帮助MySQL高效获取数据的排好序的数据结构二.索引数据结构1.二叉树2.红黑树3.Hash表4.B-Tree1.叶节点具有相同的深度,叶节点的指针为空2.所有索引元素不重复3.节点中的数据索引从左到右递增排序B-Tree5.B+Tree1.非叶子节点不存储data,可以放更多的索引2.叶子节点包含所有索引字段3.叶子节点用指针连接,提高区间访问的性能(体现在做范围查询的时候)
Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战 计算科学 神经计算 深度学习 神经网络 大数据 人工智能 大型语言模型 AI AGI LLM Java Python 架构设计 Agent RPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
使用 Python 爬取网易云音乐歌单数据(完整教程)
Python爬虫项目
python 开发语言 github selenium 爬虫
一、引言随着在线音乐平台的普及,网易云音乐(NetEaseCloudMusic)凭借其个性化的推荐算法和丰富的用户互动,吸引了大量用户。网易云音乐的歌单中包含了丰富的音乐数据,包括歌曲名、歌手、专辑、播放量、评论数等信息。通过爬取这些数据,可以对音乐流行趋势进行分析,挖掘音乐推荐策略,甚至训练个性化推荐模型。本教程将使用Python构建一个爬虫,解析网易云音乐的歌单接口,获取歌曲数据并进行数据分析
c#集合排序
zls365365
c# windows 开发语言
在C#中,集合排序是一种常见的操作,它可以帮助我们对集合中的元素进行排序。C#中提供了多种集合排序方法,包括Array.Sort、List.Sort、SortedList和SortedSet等。下面分别介绍一下这些集合排序方法的用法和注意事项:1.Array.SortArray.Sort是C#中的数组排序方法,可以对数组中的元素进行排序。Array.Sort方法可以使用默认的排序算法或者自定义的排
C# 代码(`Hashtable` 和 `SortedList`)
张謹礧
c# 哈希算法 开发语言
一、Hashtable(哈希表)1.基本概念非泛型集合:存储键值对(object类型),通过哈希算法实现快速查找。线程安全:默认非线程安全,可通过Hashtable.Synchronized创建线程安全版本。键的唯一性:键必须唯一,且不可为null(值可为null)。2.创建与初始化//创建空的HashtableHashtablehashtable=newHashtable();//创建并初始化
人脸检测算法——SCRFD
海绵波波107
# 计算机视觉 算法 计算机视觉
SCRFD算法核心解析1.算法定义与背景SCRFD(SampleandComputationRedistributionforEfficientFaceDetection)由JiaGuo等人于2021年在arXiv提出,是一种高效、高精度的人脸检测算法,其核心创新在于:双重重分配策略:样本重分配(SR):动态增强关键训练阶段的样本数据。计算重分配(CR):通过神经架构搜索(NAS)优化骨干网络(B
力扣经典算法篇-28-无重复字符的最长子串(左右指针 + Hash统计)
weisian151
算法-力扣经典篇 算法 leetcode 哈希算法
1、题干给定一个字符串s,请你找出其中不含有重复字符的最长子串的长度。示例1:输入:s=“abcabcbb”输出:3解释:因为无重复字符的最长子串是“abc”,所以其长度为3。示例2:输入:s=“bbbbb”输出:1解释:因为无重复字符的最长子串是“b”,所以其长度为1。示例3:输入:s=“pwwkew”输出:3解释:因为无重复字符的最长子串是“wke”,所以其长度为3。请注意,你的答案必须是子串
73. 矩阵置零
youzhihua
题目描述给定一个mxn的矩阵,如果一个元素为0,则将其所在行和列的所有元素都设为0。请使用原地算法。示例:输入:[[1,1,1],[1,0,1],[1,1,1]]输出:[[1,0,1],[0,0,0],[1,0,1]]暴力求解思路1.遍历数组中的每个元素,若这个元素等于0,则分别使用两个Set记录下这个元素的横坐标和纵坐标。2.遍历两个Set,将其中的行和列的值都置成0。3.由于题目要求的是原地法
lanqiaoOJ 2145:求阶乘 ← 二分法
hnjzsyjyj
信息学竞赛 # 分治算法与双指针 算法 二分法
【题目来源】https://www.lanqiao.cn/problems/2145/learning/【题目描述】满足N!的末尾恰好有K个0的最小的N是多少?如果这样的N不存在输出-1。【输入格式】一个整数K。【输出格式】一个整数代表答案。【输入样例】2【输出样例】10【评测用例规模与约定】对于30%的数据,1≤K≤10^6.对于100%的数据,1≤K≤10^18.【算法分析】●二分法的应用条件
0315_算法22级1班实验2(递归分治策略)
目录ProblemA众数问题题目描述输入输出样例输入样例输出思路分析代码实现思路优化ProblemB半数集问题题目描述输入输出样例输入样例输出思路分析代码实现ProblemC查找数组拐点题目描述输入输出样例输入样例输出思路分析代码实现思路优化ProblemA众数问题题目描述所谓众数,就是对于给定的含有N个元素的多重集合,每个元素在S中出现次数最多的成为该元素的重数,多重集合S重的重数最大的元素成为
0301_算法22级1班实验1
目录ProblemA统计数字问题1.题目描述2.思路分析3.代码实现ProblemB字典序问题1.题目描述2.思路分析3.代码实现ProblemC最多约数问题1.题目描述2.思路分析3.代码实现ProblemA统计数字问题1.题目描述题目描述问题描述:一本书的页码从自然数1开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6页用数字6表示,而不是06或0
OpenCV中常用特征提取算法(SURF、ORB、SIFT和AKAZE)用法示例(C++和Python)
点云SLAM
图形图像处理 opencv 算法 ORB算法 SIFT算法 SURF算法 AKAZE算法 计算机视觉
OpenCV中提供了多种常用的特征提取算法,广泛应用于图像匹配、拼接、SLAM、物体识别等任务。以下是OpenCV中几个主流特征提取算法的用法总结与代码示例,涵盖C++和Python两个版本。常用特征提取算法列表算法特点是否需额外模块SIFT(尺度不变特征)稳定性强、可旋转缩放xfeatures2d模块SURF(加速稳健特征)快速但专利保护xfeatures2d模块ORB(OrientedFAST
【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能 python 梯度下降 优化器 SGD Adam PyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
脱岗离岗逃岗监测识别软件系统平台 标检测算法#YOLO
值班脱岗智能监测识别系统是一种利用AI视频智能分析技术的智能化系统,能够对办公工作岗位区域、岗亭、值班室、生产线岗位等进行7*24小时不间断实时监测。该系统的出现,有助于提高工作效率,确保工作秩序的正常运行,同时也能有效避免值班人员脱岗、懈怠等现象的发生。该系统的工作原理是通过高清摄像头捕捉实时画面,然后利用AI视频智能分析技术对画面进行实时分析,识别出是否有人脱岗、懈怠或者有其他异常情况发生。当
颠覆未来:创新代码引领人工智能与量子计算深度融合
金枝玉叶9
程序员知识储备1 程序员知识储备2 程序员知识储备3 人工智能 量子计算
摘要在信息时代飞速演进的背景下,人工智能与量子计算正以前所未有的速度互相融合,推动着科技边界的不断拓展。本文回顾了经典算法的智慧,展示了前沿深度学习模型的构建,并通过量子电路设计探讨了创新代码的可能性,为探索未来科技变革提供了全新视角。1.引言当前,科技创新正处于高速迭代的关键阶段,传统计算方法与新型技术的交汇处正成为研究热点。人工智能的发展已渗透到各行各业,而量子计算的崛起则为解决复杂计算问题提
智界R7智驾功能和性能评价
TheWanderers
智能驾驶 智界
一、智驾行车能力标题硬件配置与系统架构感知硬件:Max/Ultra版搭载1个192线激光雷达、3个毫米波雷达(含1个4D成像雷达)、12个超声波雷达、11个高清摄像头(含前向800万像素双目+鱼眼镜头)。Pro版未配备激光雷达,但保留3个毫米波雷达和10个摄像头。核心算法:HUAWEIADS3.0系统,基于端到端架构,整合感知、决策与控制模块,支持全场景目标识别(如非标准障碍物、夜间行人)。算力支
人工智能视频分析系统人员离岗报警设计方案
liuhu21
人工智能 云计算 运维
一、方案概述近几年安防监控技术不断的进步,特别是在人工智能推出之后。安防监控系统结合人工智能算法做到了许多以前无法做到的事情。就比如我们今天要说的离岗检测报警监控系统。以前我们只能通过人工值守监控室的方式,通过人的判断去观看现场人员在岗情况。如今有了离岗检测监控系统,系统可以自动监测现场人员是否在岗、离岗时间以及离岗人数等等。这样,大大减少了监控室值班人员的工作量,同时相较人工监管提升了工作效率。
睡岗离岗检测算法 Python
燧机科技SuiJi
人工智能 python 算法 深度学习 神经网络
睡岗离岗检测算法的核心在于实时监控和智能分析,睡岗离岗检测算法通过安装在关键区域的监控摄像头,系统能够捕捉到员工的活动画面。当系统检测到人体位置长时间未发生变化时,将启动睡姿分类器。该分类器能够识别多种睡姿,如趴在桌子上睡、坐在凳子上后仰睡等。一旦识别为睡姿,系统将立即触发告警机制。这可以通过向管理人员发送警报信号,或通过语音提醒员工的方式实现。睡岗离岗检测算法在多种场景下均有广泛应用。该算法能够
微算法科技技术创新,将量子图像LSQb算法与量子加密技术相结合,构建更加安全的量子信息隐藏和传输系统
随着信息技术的发展,数据的安全性变得尤为重要。在传统计算模式下,即便采用复杂的加密算法,也难以完全抵御日益增长的网络攻击威胁。量子计算技术的出现为信息安全带来了新的解决方案。然而,量子图像处理领域仍面临复杂度高、效率低的问题。微算法科技通过将量子图像LSQb算法与量子加密技术相结合,提出了一种全新的信息隐藏和传输方案,旨在构建更加安全高效的数据保护机制。LSQb算法,即量子图像的最小有效量子比特算
5万人流挤地铁如何追踪?陌讯算法实战FPS飙升300%
开篇痛点在智慧城市安防场景中,传统视觉算法常面临“三难困境”:低光照漏检率飙升(夜间误报率超30%)、人群遮挡ID切换混乱(MOTA指标<50%)、硬件资源吃紧(1080P视频流处理>200ms)。某省会交警平台曾反馈:“雨雾天车牌识别准确率骤降至65%,追踪目标平均5分钟丢失1次”。技术解析:动态多目标蒸馏网络陌讯视觉算法创新性融合多任务蒸馏架构与时空注意力机制,攻克复杂场景泛化难题。核心公式创
3步实现安防高精度检测:陌讯算法夜间监控落地实战
2501_92474745
目标跟踪 人工智能 计算机视觉 算法 目标检测 视觉检测
开篇痛点:安防监控系统在实时目标检测中常面临严峻挑战。实测数据显示,传统算法在低光、遮挡或动态场景下,泛化能力不足,导致平均误报率高达15%(数据来源:安防行业报告)。尤其在夜间或拥挤环境下,系统卡顿、漏检频发,不仅降低响应效率,还增加安全隐患。例如,某城市交通监控中心反馈,其开源模型在高密度人流中出现每秒帧率(FPS)骤降至20帧以下,引发报警延迟问题。这些问题根源在于算法鲁棒性和实时性不足,亟
离岗误报率 20%?陌讯时序算法实测降 90%
2501_92474711
算法 计算机视觉 目标跟踪 机器学习 人工智能 边缘计算
开篇:工业安防中的"隐形漏洞"在制造业车间、变电站等关键场景,离岗检测是保障生产安全的核心环节。传统监控系统依赖人工巡检,存在85%的漏检率;而普通视觉算法在光照变化、人员遮挡场景下,误报率常高达20%以上[实测数据显示]。某汽车零部件厂曾因离岗检测失效导致设备空转2小时,直接损失超12万元。这种"看得见的监控,防不住的风险"困境,凸显了传统视觉方案在复杂工业场景中的局限性。技术解析:从单帧检测到
二分查找排序算法
周凡杨
java 二分查找 排序 算法 折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
java中的BigDecimal
bijian1013
java BigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
Shell echo命令详解
daizj
echo shell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
多线程监听器事件模式(一个简单的例子)
百合不是茶
线程 监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
spring InitializingBean接口
bijian1013
java spring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle 数据库 权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
Spring源码学习-JdbcTemplate queryForObject
bylijinnan
java spring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
[冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
js 获取浏览器型号
cuityang
js 浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
C# socks5详解 转
dalan_123
socket C#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
Yii防注入攻击笔记
dcj3sjt126com
sql WEB安全 yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
MongoDB简介[一]
eksliang
mongodb MongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
zookeeper windows 入门安装和测试
greemranqq
zookeeper 安装 分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
jdk与jre的区别(_)
macroli
java jvm jdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境 每天进步一点点 众观千象 git
$ git push joe prod-2295-1
To
[email protected] :joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
[一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hive hive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。