Hive引擎包括:默认MR、Tez、Spark
不更换引擎hive默认的就是MR。
MapReduce:是一种编程模型,用于大规模数据集(大于1TB)的并行运算。
Hive on Spark:Hive既作为存储元数据又负责SQL的解析优化,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。
就是通过sparksql,加载hive的配置文件,获取到hive的元数据信息,spark sql获取到hive的元数据信息之后就可以拿到hive的所有表的数据,接下来就可以通过spark sql来操作hive表中的数据
Hive on Spark效率要低于Spark on Hive
前者只有计算引擎是Spark,前期解析,转换,优化等步骤都是Hive完成。
后者只有元数据用了Hive,对SQL的解析,转换,优化等都是Spark完成。
Tez是Apache开源的支持DAG作业的计算框架,它直接源于MapReduce框架,核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等,这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业
Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。
核心思想:MapReduce将一个算法抽象成Map和Reduce两个阶段进行处理;Tez将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等依赖DAG:Mapreduce没有DAG一说,Tez将map和reduce阶段拆分成多个阶段,分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业落地磁盘:MapReduce会有多次落地磁盘;Tez可以将多个有依赖的作业转换为一个作业,这样只需写一次HDFS,且中间节点较少。
使用场景:spark更像是一个通用的计算引擎,提供内存计算,实时流处理,机器学习等多种计算方式,适合迭代计算;tez作为一个框架工具,特定为hive和pig提供批量计算运行模式:spark属于内存计算,支持多种运行模式,可以跑在standalone,yarn上;而tez只能跑在yarn上;虽然spark与yarn兼容,但是spark不适合和其他yarn应用跑在一起资源利用:tez能够及时的释放资源,重用container,节省调度时间,对内存的资源要求率不高; 而spark如果存在迭代计算时,container一直占用资源;
mr引擎在hive 2中将被弃用。官方推荐使用tez或spark等引擎。
在hive sql中使用了union 或 join操作
tez会将任务切分,每个小任务,同一个HDFS分区目录下会创建一个文件文件夹,这就会造成一个非常严重的问题,假如这张表的下文,使用这张表没有用tez,而是使用spark或者mr,这两种引擎是不会遍历子文件夹下的内容的。查出来的数据为0。而我们很难约束,其他人使用同一种引擎,
所以tez在使用中抛弃。我们最中选择了spark引擎。
MapReduce: 是一种离线计算框架,将一个算法抽象成Map和Reduce两个阶段进行处理,每个阶段都是用键值对(key/value)作为输入和输出,非常适合数据密集型计算。Map/Reduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性地返回它所完成的工作和最新的状态。如果一个节点在设定的时间内没有进行心跳上报,主节点(可以理解为主服务器)就会认为这个节点down掉了,此时就会把分配给这个节点的数据发到别的节点上运算,这样可以保证系统的高可用性和稳定性。因此它是一个很好的计算框架。
TEZ:是基于Hadoop YARN之上的DAG(有向无环图,Directed Acyclic Graph)计算框架。核心思想是将Map和Reduce两个操作进一步拆分,即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等。这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业,从而可以减少Map/Reduce之间的文件存储,同时合理组合其子过程,也可以减少任务的运行时间。
Spark:Hive on Spark总体的设计思路是,尽可能重用Hive逻辑层面的功能;从生成物理计划开始,提供一整套针对Spark的实现,比如 SparkCompiler、SparkTask等,这样Hive的查询就可以作为Spark的任务来执行了
单从引擎的执行效率来说:Spark > TEZ > MapReduce
MR
计算,会对磁盘进行多次的读写操作,这样启动多轮job的代价略有些大,不仅占用资源,更耗费大量的时间
TEZ
计算,就会生成一个简洁的DAG作业,算子跑完不退出,下轮继续使用上一轮的算子,这样大大减少磁盘IO操作,从而计算速度更快。 TEZ比MR至少快5倍(约值,反正是快,不必较真0.0)
Spark
计算,DAG生成,Stage划分,比MR快10倍(约值,反正是快,不必较真0.0)与TEZ相比我选择Spark,一来快,二来奇葩问题比较少