终于一次轮到了讲自己的paper了 hahaha,写个中文的解读放在博客方便大家讨论
Reference and prenotes
paper: https://arxiv.org/abs/2307.07260
code: https://github.com/KTH-RPL/DynamicMap_Benchmark
b站:地图动态障碍物去除总结 ITSC’23: A Dynamic Points Removal Benchmark in Point Cloud Maps
主要就是2019年末在公司的时候,做一个教育平台的无人驾驶小车项目的时候 从头开始部署autoware发现,建图中会有我们来来回回走动的 点云,当时其实就想了一种和 ndt slam 直接结合的方式去除,不过比较稚嫩+工程的想法所以后续也没有什么总结,隐约记得:最后还是 人手动去除的障碍物 毕竟也就三幅图
直到 2023年初 来了KTH后 天明又提了这个需求 问我能不能自动去掉Leica动态图,他人手标了KTH的图标了1个月,所以当时就又投入到这个idea的调研了,最后就是这一篇 + 后续两篇方案 的输出,那么开始进入正题
如图是截取KITTI 07的部分地图,因为有semanticKITTI的标注信息 所以我们把动态物体用黄色表示出来了,这个动态物体如果不在建图中去掉 可能会导致:
那么对比之前方案 和 这篇的贡献主要在于:
基准测试包含四个方案 Removert,ERASOR,原octomap,改进后octomap,那么先整理一下方案 说明一下各自缺点 然后进入到实验给大家对应起各个问题
首先图2,3指示了三个方案各自的问题 【部分问题erasor文章中也进行了探讨 如果感兴趣 可以点进paper查看reference进行阅读】:
以下为方法总结:
我们的改进主要是针对benchmark和实验发现的问题进行的,在原始的octomap前加入了噪音去除,地面分割,然后octomap会根据每次scan的 给整个空间的每个voxel occupancy value 也就是这个voxel被占据的概率,最后运行完所有,我们根据概率阈值进行筛选动静态
同时需要注意的是 得益于octomap © 方案是唯一的不需要先验原始地图的,也就是后续如果能对时间进行改进 可以做到实时建图,最后直接输出clean map
我们引入了新的两个数据集:
还有就是评估metric从 voxel-level 换成了 point-level,这样就不会对gt进行任何形式的处理 比如降采样等,也能保证最精准的评估,对标后续建筑领域的测量评估(全站仪)
首先趁热打铁,刚刚大家读完了 各个方案缺点,正好从实验可视化的角度看一看:
raycasting的问题 在图7的(d) 中得到了非常明显的体现,也就是 地面角度和雷达稀疏性 导致去掉了过多静态点,给地面造成了空洞 空洞的形状也正如雷达的ring
关于车顶部点云无法去除 在KITTI05的数据中体现较多 因为文章篇幅 原文并没有能展示
height-based 在图6的© 可以看到树木的trunk 很规律的被高度截断,还有图中的其他部分 限于篇幅没有截图所有的,还有图7© 也可以看到一小块墙壁的高度面删除
那么从可视化角度,(note:ERASOR 我调过参,因为对高度阈值需要准确 16线的小车上不同于KITTI av2的也和kitti的高度不一样 所以为了对他们公平,就用了不同的config,其他的基本保持一个参数 比如我们改进后的octomap w GF阈值都是默认的一个
ERASOR和octomap w GF表现是比较好的,考虑下游任务,如果更追求精准度 octomap w GF更好,如果更追求去除的干净程度给部分不依赖 plane feature的localization用 可能ERASOR更好,预告:后续的两篇方法在时间和精度上均能够超过octomap w GF,欢迎大家star repo 以追踪信息
从表的信息可以看出经过 benchmark指导 改进后的octomap w GF在大多时候表现还是较为优越的,虽然这并不是我们的最后结果(benchmark 比较站在中立的角度)
Fig 5指示了 没有标出来的动态点都在动态点哪个位置分布上,可以看到 基本都在动态点的周围,也就是说 后续可能经过一个cluster 距离的简单聚类 会再次提升DA的值(这也就是我们benchmark的意义:如何分析 - 分析后如何改进)
表二则是指示了 w GF后我们的速度提升 20-30%,当然还是不如Removert和ERASOR快,但是 在审的两篇方法为主 均在速度上有极大的提升
结论就是,这篇benchmark 大概就是给大家进行现有方案的总结,并且实验分析,改进其中一个老方案,给大家看到benchmark paper的意义,也可以说是survey paper(其实主要还是每个方法都有自己的格式 对比的都不开源 所以干脆自己干 搞一个 造福大家 一键生成与复现
最后就是 这个动态去除pipeline + simple ndt slam,可以做到给大家一条龙服务,需要做的就是rosbag record /point_cloud,录下你的雷达数据即可!
所有的代码和README均已完善,欢迎大家一起交流,如果有数据集 自己标了gt想要贡献的话 就更好啦!Stay tuned with us (因为后面还有更多方案会加进来哦
赠人点赞 手有余香 ;正向回馈 才能更好开放记录 hhh