Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], …, C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
题目的意思是:求一个循环数组的子序列和的最大值,代码一是我自己包里破解的,分了三种情况,所有的都为负,所有的都为正,有正也有负。比较死板。
代码二就厉害了,用了动态规划,一个循环就搞定了,
dp[j]=max(A[i],A[i+1],...,A[j])
dp[j+1]=A[j+1]+max(dp[j],0)
大概意思dp[j]就定义为A[i]~A[j]最大的和,考虑到dp[j]可能为负数,所以最后公式就变成了dp[j+1]=A[j+1]+max(dp[j],0)了
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
max_value=float("-inf")
t=0
flag=True
for i in range(len(A)):
if(A[i]<0):
flag=False
break
t+=A[i]
if(flag):
return t
for i in range(len(A)):
sum_a=0
if(A[i]>0):
sum_a=0
for j in range(i,i+len(A)):
a=j%len(A)
sum_a+=A[a]
max_value=max(sum_a,max_value)
if(sum_a<0):
break
if(max_value==float("-inf")):
for i in range(len(A)):
max_value=max(max_value,A[i])
return max_value
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
ans=cur=0
for x in A:
cur=x+max(cur,0)
ans=max(ans,cur)
return ans
[LeetCode]Notes and A Primer on Kadane’s Algorithm