文章目录
目录
Python3学习笔记之-模块(第一篇)
一、使用模块
二、作用域
三、安装第三方模块
四、模块搜索路径
python本身内置了许多模块,安装就能使用,我们编写一个自己的模块试一试:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'my module'
__author__='myname'
import sys
def test():
args = sys.argv
if len(args)==1:
print('hello,world')
elif len(args)==2:
print('hello,%s!' & args[1])
else:
print('Too many arguments!')
if __name__=='__main__':
test()
第一行和第二行是标准注释,第一行注释可以让这个模块文件直接在操作系统上面运行,第二行注释表示模块本事使用标准的UTF-8编码;
第四行是一个字符串,表示模块的文档注释,下面的__author__
变量把作者写进去,这就是标准模块的模板。
使用sys
模块的第一步,就是导入该模块,导入sys
模块后,我们就有了变量sys
指向该模块,利用sys
这个变量,就可以访问sys
模块的所有功能。
sys
模块有一个argv
变量,用list存储了命令行的所有参数。argv
至少有一个元素,因为第一个参数永远是该.py文件的名称,例如:
运行python3 hello.py
获得的sys.argv
就是['hello.py']
;
运行python3 hello.py Michael
获得的sys.argv
就是['hello.py', 'Michael']
。
最后,注意到这两行代码:
if __name__=='__main__':
test()
当我们在命令行运行hello
模块文件时,Python解释器把一个特殊变量__name__
置为__main__
,而如果在其他地方导入该hello
模块时,if
判断将失败,因此,这种if
测试可以让一个模块通过命令行运行时执行一些额外的代码,最常见的就是运行测试。
我们可以用命令行运行hello.py
看看效果:
python3 hello.py
#结果:Hello, world!
python hello.py Michael
#结果:Hello, Michael!
在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人用,有的我们仅仅希望在函数内部用,在Python中是通过_前缀来实现的。
正常函数和变量名是公开的(public),可以被直接引用,你如:abc、x123、PI等等;
类似__xxx__
这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的__author__
,__name__
就是特殊变量,hello
模块定义的文档注释也可以用特殊变量__doc__
访问,我们自己的变量一般不要用这种变量名;
类似_xxx
和__xxx
这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc
,__abc
等;
之所以我们说,private函数和变量“不应该”被直接引用,而不是“不能”被直接引用,是因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应该引用private函数或变量。
private函数或变量不应该被别人引用,那它们有什么用呢?请看例子:
def _private_1(name):
return 'Hello, %s' % name
def _private_2(name):
return 'Hi, %s' % name
def greeting(name):
if len(name) > 3:
return _private_1(name)
else:
return _private_2(name)
我们在模块里公开greeting()
函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()
函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:
外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。
在Python中,安装第三方模块,是通过包管理工具pip完成的。
一般来说,第三方库都会在Python官方的pypi.python.org网站注册,要安装一个第三方库,必须先知道该库的名称,可以在官网或者pypi上搜索,比如Pillow的名称叫Pillow,因此,安装Pillow的命令就是:
pip install Pillow
在使用Python时,我们经常需要用到很多第三方库,例如,上面提到的Pillow,以及MySQL驱动程序,Web框架Flask,科学计算Numpy等。用pip一个一个安装费时费力,还需要考虑兼容性。我们推荐直接使用Anaconda,这是一个基于Python的数据处理和科学计算平台,它已经内置了许多非常有用的第三方库,我们装上Anaconda,就相当于把数十个第三方模块自动安装好了,非常简单易用。
可以从Anaconda官网下载GUI安装包,安装包有500~600M,所以需要耐心等待下载。下载后直接安装,Anaconda会把系统Path中的python指向自己自带的Python,并且,Anaconda安装的第三方模块会安装在Anaconda自己的路径下,不影响系统已安装的Python目录。
安装好Anaconda后,重新打开命令行窗口,输入python,可以看到Anaconda的信息。
可以尝试直接import numpy
等已安装的第三方模块。
当我们试图加载一个模块时,Python会在指定的路径下搜索对应的.py文件,如果找不到,就会报错:
import mymodule
Traceback (most recent call last):
File "", line 1, in
ImportError: No module named mymodule
默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys
模块的path
变量中:
import sys
sys.path
['', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python36.zip',
'/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6', ...,
'/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages']
如果我们要添加自己的搜索目录,有两种方法:
一是直接修改sys.path
,添加要搜索的目录:
import sys
sys.path.append('/Users/michael/my_py_scripts')
这种方法是在运行时修改,运行结束后失效。
第二种方法是设置环境变量PYTHONPATH
,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响。