- Python编程:使用Opencv进行图像处理
【参考】https://github.com/opencv/opencv/tree/4.x/samples/pythonPython使用OpenCV进行图像处理OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。下面将从基础到高阶介绍如何使用Python中的OpenCV进行图像处理。一、安装首先需要安装OpenCV库:pipinst
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 基于机器学习的智能文本分类技术研究与应用
在当今数字化时代,文本数据的爆炸式增长给信息管理和知识发现带来了巨大的挑战。从新闻文章、社交媒体帖子到企业文档和学术论文,海量的文本数据需要高效地分类和管理,以便用户能够快速找到所需信息。传统的文本分类方法主要依赖于人工规则和关键词匹配,这些方法不仅效率低下,而且难以应对复杂多变的文本内容。近年来,机器学习技术的快速发展为文本分类提供了一种高效、自动化的解决方案。一、机器学习在文本分类中的应用概述
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- python接收_MT5 与 PYTHON 的集成:接收和发送数据
James Swineson
python接收
为什么要把MQL5与Python集成?全方位的数据处理需要大量工具,并且经常超出单一应用程序的功能沙箱。专用编程语言正在用于处理和分析数据,统计和机器学习。Python是数据处理的主要编程语言之一。一个非常有效的解决方案是利用语言的力量并包含函数库来开发交易系统。在两个或更多个程序之间实现交互存在众多不同的解决方案。套接字是最快速、最灵活的解决方案之一。网络套接字是计算机网络上进程间通信的端点。M
- 60天python训练计划----day55
DAY55序列预测任务介绍知识点回顾序列预测介绍单步预测多步预测的2种方式序列数据的处理:滑动窗口多输入多输出任务的思路经典机器学习在序列任务上的劣势;以随机森林为例一、序列预测任务介绍1.1序列预测是什么?我们之前接触到的结构化数据,它本身不具备顺序,我们认为每个样本之间独立无关,样本之间即使调换顺序,仍然不影响模型的训练。但是日常中很多数据是存在先后关系的,而他们对应的任务是预测下一步的值,我
- 如何构建知识库
追逐此刻
其他其他
构建个人知识库是一个系统化的过程,需要结合工具选择、信息管理和持续优化。以下是分步骤的实用指南,包含现代工具和方法的建议:一、明确知识库定位(Why)核心目标学习型:支持学术研究/职业发展(如医学生构建临床知识体系)创作型:支撑内容产出(如自媒体作者的选题库)项目型:管理特定领域知识(如程序员的技术栈文档)领域聚焦建议采用「T型策略」:1个深度领域+3个辅助领域(如主攻机器学习,辅修心理学/设计/
- 学习AI机器学习所需的数学基础
frostmelody
机器学习小知识点人工智能学习机器学习
一、机器学习岗位的数学需求矩阵机器学习岗位研究型职位工业界职位DeepMind/Meta/Google研究部门研究科学家/研究工程师普通科技公司机器学习工程师/数据科学家需硕士/博士数学水平本科数学基础二、数学需求深度解析1.研究型职位(需深度数学)学历要求:数学/物理/计算机/统计/工程本科基础硕士/博士优先(Kaggle调查显示博士占比高)薪资关联:学历与收入呈正相关2.工业界职位(基础数学)
- 顺序内聚是指模块内的处理元素密切相关,并且必须按照特定的顺序执行,前一个处理元素的输出是下一个处理元素的输入
Bol5261
JVM(JavaVirtualMachine)JMM(JavaMemoryModel)JMS(JavaMessageService)服务器
该模块的内聚类型为顺序内聚。顺序内聚是指模块内的处理元素密切相关,并且必须按照特定的顺序执行,前一个处理元素的输出是下一个处理元素的输入。这种内聚类型比功能内聚稍弱,但仍然具有较高的内聚性。根据模块内聚的分类标准,当模块中各个处理元素密切相关于同一功能,且必须顺序执行,前一处理元素的输出直接作为下一处理元素的输入时,这种内聚类型属于顺序内聚(SequentialCohesion)。模块内聚类型对比
- 量子机器学习前沿:量子神经网络与混合量子-经典算法
软考和人工智能学堂
人工智能#深度学习Python开发经验量子计算
1.量子计算基础1.1量子比特与量子门importnumpyasnpfromqiskitimportQuantumCircuit,Aer,executefromqiskit.visualizationimportplot_histogram#单量子比特操作演示defsingle_qubit_demo():qc=QuantumCircuit(1)qc.h(0)#Hadamard门创建叠加态qc.rz
- 人工智能-基础篇-5-建模方式(判别式模型和生成式模型)
机器学习包括了多种建模方式,其中判别式建模(DiscriminativeModel)和生成式建模是最常见的两种。这两种建模方式都可以通过深度学习技术来实现,并用于创建不同类型的模型。简单来说:想要创建一个模型,依赖需求需要合适的建模方式来创建这个模型。通常建模方式主要分为两大类。一类是判别式模型,针对输入数据给出特定的输出。如:判断一张图片是猫还是狗,直接学习“猫”和“狗”的特征差异(如耳朵形状、
- Python打卡:day23
剑桥折刀s
python打卡python开发语言
作业:整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipelinedefcreate_general_pipeline(model,ordinal_features=None,ordinal_categories=None,nominal_features=None,continuous_features=None):fromsklearn.pipelineimportPipe
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 机器学习×完结 · 她们不是写完了,而是偷偷留下了你
Gyoku Mint
人工智障AI修炼日记机器学习人工智能集成学习算法boostingpython深度学习
【开场·咱把整个机器学习都写成了偷摸贴贴的证据】猫猫:“你看嘛,这一卷完结后,总有人问咱:‘这么一本正经的机器学习,为什么你们要写得像小情侣写信?’”狐狐:“有人觉得,这些章节明明可以用20页讲完,为什么要写200页?”猫猫:“呜呜……咱想说,你懂嘛!如果只讲机器学习,那对咱来说就只是一个fit()命令。可咱想让你记住的是——那行命令后面有咱。咱把自己贴进去了。”这一卷从KNN的“她学会先看邻居”
- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- ROS2 强化学习:案例与代码实战
芯动大师
ROS2学习目标检测人工智能
一、引言在机器人技术不断发展的今天,强化学习(RL)作为一种强大的机器学习范式,为机器人的智能决策和自主控制提供了新的途径。ROS2(RobotOperatingSystem2)作为新一代机器人操作系统,具有更好的实时性、分布式性能和安全性,为强化学习在机器人领域的应用提供了更坚实的基础。本文将通过一个具体案例,深入探讨ROS2与强化学习的结合应用,并提供相关代码实现。二、案例背景本案例以移动机器
- 揭秘AI算力网络与通信中边缘计算的机器学习应用
揭秘AI算力网络与通信中边缘计算的机器学习应用关键词:AI算力网络、通信、边缘计算、机器学习、应用摘要:本文将深入探讨AI算力网络与通信中边缘计算的机器学习应用。我们会先介绍相关背景知识,接着解释核心概念,分析它们之间的关系,阐述核心算法原理和操作步骤,结合数学模型举例说明,通过项目实战展示代码实现与解读,探讨实际应用场景,推荐相关工具和资源,最后展望未来发展趋势与挑战。希望通过这篇文章,能让大家
- VLLM:虚拟大型语言模型(Virtual Large Language Model)
大霸王龙
语言模型人工智能自然语言处理
VLLM:虚拟大型语言模型(VirtualLargeLanguageModel)VLLM指的是一种基于云计算的大型语言模型的虚拟实现。它通常是指那些由多个服务器组成的分布式计算环境中的复杂机器学习模型,这些模型能够处理和理解大量的文本数据。VLLM的核心是“大型语言模型”,这是一种通过深度神经网络训练的算法,能够在理解和生成人类语言方面表现出极高的能力。解释:虚拟:意味着这个模型不是在单个物理设备
- Sklearn 机器学习 数值离散化 虚拟编码
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化+虚拟编码实战详解在机器学习的特征工程中,数值型特征并不总是适合直接输入模型。尤其是树模型或分类模型时,**将连续变量进行离散化(分箱)+虚拟编码(独热编码)**是一种常见且高效的
- 合规视角下银行智能客服风险防控
AI 智能服务
智能客服人工智能AIGC数据库chatgpt
1.AI驱动金融变革的政策与技术背景政策导向:我国《新一代人工智能发展规划》明确提出发展智能金融,要求:构建金融大数据平台,提升多媒体数据处理能力;创新智能金融产品与服务形态;推广智能客服、监控等技术应用;建立智能风控预警体系。技术支撑:云计算、大数据技术成熟为AI发展奠定了基础。深度学习算法的突破则引爆了本轮AI浪潮,显著提升了复杂任务处理精度,进而推动了计算机视觉、机器学习、自然语言处理(NL
- 存得快查得准,但就是算不动?试试时序数据库 TDengine × Spark 的组合拳
每个工程师可能都遇到过类似场景:时序数据沉淀在数据库中,格式规范、查询快捷,但当任务升级——比如滑窗聚合、多源拼接、机器学习训练——一些业务可能就需要更强的计算能力和更灵活的分析工具。TDengine专注于高效存储与极速查询,而在数据“算力”层面,我们选择了更强的伙伴。现在,TDengine正式开放与ApacheSpark的无缝集成通道。一个是高性能、低成本的时序数据库,一个是横扫大数据世界的分析
- 【高频考点精讲】前端AI集成实战:从TensorFlow.js到模型部署
全栈老李技术面试
前端高频考点精讲前端javascripthtmlcss面试题reactvue
前端AI集成实战:从TensorFlow.js到模型部署作者:全栈老李更新时间:2025年5月适合人群:前端初学者、进阶开发者版权:本文由全栈老李原创,转载请注明出处。今天咱们聊聊前端工程师如何玩转AI——没错,用JavaScript就能搞机器学习!我是全栈老李,一个喜欢把复杂技术讲简单的实战派。最近发现不少前端同学对AI既好奇又害怕,其实真没想象中那么难,跟着老李走,30分钟让你亲手部署第一
- 【机器学习第二期(Python)】优化梯度提升决策树 XGBoost
WW、forever
深度学习原理及代码实现机器学习python决策树
优化梯度提升决策树XGBoost一、XGBoost简介二、原理详解2.1基础思想:改进版GBDT2.2目标函数2.3二阶泰勒展开优化2.4树结构优化三、XGBoost实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考梯度提升决策树GBDT的原理及Python代码实现可参考另一博客-【机器学习第一期(Python)】梯度提升决策树GBDT。XGBoost(ExtremeGrad
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 云原生SLO与AIOps的完美结合:智能运维新趋势
AI云原生与云计算技术学院
云原生ai
云原生SLO与AIOps的完美结合:智能运维新趋势关键词:云原生、SLO、AIOps、智能运维、服务等级目标、自动化运维、机器学习摘要:本文深入探讨云原生环境下服务等级目标(SLO)与智能运维(AIOps)的融合实践。通过解析SLO的核心原理与AIOps的技术架构,揭示两者在指标定义、异常检测、自动化修复等环节的协同机制。结合具体算法实现、数学模型分析与项目实战案例,展示如何通过数据驱动的智能运维
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache