- 梯度下降法以及随机梯度下降法
HKkuaidou
人工智能深度学习pythonpytorch
梯度下降法就是在更新weight的时候,向函数值下降的最快方向进行更新,具体的原理我就不再写了,就是一个求偏导的过程,有高数基础的都能够很快的理解过程。我在我的github里面会一直更新自己学习pytorch的过程,地址为:https://github.com/00paning/Pytorch_Learning这里我直接展示一个简易实现的python代码,我们还是先看一下运行的效果图:相关pyth
- 深度学习之优化器Optimizer介绍
yueguang8
人工智能深度学习人工智能
优化器(Optimizer)是深度学习训练中非常关键的组件,它负责根据损失函数的梯度来更新模型参数,从而使模型性能不断提升。1.优化器的作用和重要性优化器是训练深度学习模型的核心组件之一。它负责根据损失函数的梯度来更新模型参数,推动模型性能不断提高。选择合适的优化器可以极大地影响模型的收敛速度和最终性能。2.优化器的基本原理优化器的基本思路是利用梯度下降法来最小化损失函数。每一步都根据当前梯度的方
- 深度学习中常用的优化器
无能者狂怒
深度学习计算机视觉人工智能深度学习算法
梯度下降是优化神经网络的首选方法。本文将介绍各种基于梯度下降的优化器,如Momentum,Adagrad以及Adam等等StochasticGradientDescent(SGD)MomentumAdagradRMSpropAdamAdaMax1:梯度下降假设梯度下降法是一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视
- 基于PyTorch的深度学习4——使用numpy实现机器学习vs使用Tensor及Antograd实现机器学习
Wis4e
深度学习机器学习pytorch
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。以下为具体步骤:1)导入需要的库。importnumpyasnp%matplotlibinlinefrommatplotlibimportpyplotas
- 梯度下降法(Gradient Descent) -- 现代机器学习的血液
AOIWB
机器学习人工智能python
梯度下降法(GradientDescent)–现代机器学习的血液梯度下降法是现代机器学习最核心的优化引擎。本文从数学原理、算法变种、应用场景到实践技巧,用三维可视化案例和代码实现揭示其内在逻辑,为你构建完整的认知体系。优化算法一、梯度下降法的定义与核心原理定义:梯度下降法是一种通过迭代更新参数来最小化目标函数的优化算法,其核心思想是沿着当前点的负梯度方向逐步逼近函数最小值。数学表达:参数更新公式为
- ACM算法与竞赛基地:蓝桥备战 --- 二分篇
NONE-C
蓝桥杯算法数据结构
ACM基地:蓝桥备战—二分篇什么是二分?二分是一种搜索策略,类似于高速中学到的梯度下降法,当我们落在某一点是沿着该点斜率,我们可以像最优处移动,二分也是样的策略,但其更加严格,现代算法,如模拟退火,蚁群算法,BP算法针对的都是存在多种最优解,解决的问题也更加宽泛,而作为传统算法的二分,有着更加严格的限制,想要理解二分,必须要对该限制有深刻理解。接下来我们将展开对二分的学习二分查找+二分答案key1
- 机器学习—逻辑回归
60岁的程序猿
1024程序员节机器学习逻辑回归人工智能算法
本内容是博主自学机器学习总结的。由于博主水平有限,内容可能有些许错误。如有错误,请发在评论区。目录1、基础概念1.1、什么是逻辑回归1.2、逻辑回归与线性回归的区别1.3应用场景2、逻辑回归模型2.1、模型定义2.2、Sigmoid函数2.3、决策边界2.4、概率解释3、模型训练3.1、损失函数3.2、梯度下降法3.3、牛顿法3.4、拟牛顿法3.4、正则化3.5、总结4、多分类问题4.1、一对多(
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- 机器学习算法工程师笔试选择题(1)
Ash Butterfield
机器学习算法人工智能
1.关于梯度下降的说法正确的是:A.梯度下降法可以确保找到全局最优解。B.随机梯度下降每次使用所有数据来更新参数。C.批量梯度下降(BatchGradientDescent)通常收敛更快。D.学习率过大会导致梯度下降过程震荡。答案:D(学习率过大会导致不稳定,可能震荡或无法收敛)2.在以下算法中,哪种算法属于无监督学习?A.逻辑回归B.K-近邻算法C.支持向量机D.K-均值聚类答案:D(K-均值聚
- 【单层神经网络】基于MXNet的线性回归实现(底层实现)
辰尘_星启
线性回归mxnet机器学习人工智能深度学习神经网络python
写在前面刚开始先从普通的寻优算法开始,熟悉一下学习训练过程下面将使用梯度下降法寻优,但这大概只能是局部最优,它并不是一个十分优秀的寻优算法整体流程生成训练数据集(实际工程中,需要从实际对象身上采集数据)确定模型及其参数(输入输出个数、阶次,偏置等)确定学习方式(损失函数、优化算法,学习率,训练次数,终止条件等)读取数据集(不同的读取方式会影响最终的训练效果)训练模型完整程序及注释fromIPyth
- 《深度学习入门:梯度下降法全解析,小白必看!》
Lemon_wxk
深度学习
目录一、引言二、什么是梯度下降?2.1误差的计算2.2梯度的计算2.3参数更新2.4重复迭代三、梯度下降法的几种主要类型1.批量梯度下降(BatchGradientDescent)2.随机梯度下降(StochasticGradientDescent,SGD)3.小批量梯度下降(Mini-BatchGradientDescent)四、梯度下降的挑战与解决方案1.学习率的选择2.局部最小值与鞍点3.梯
- 最小二乘法-线性回归 和 梯度下降法
梦回楼~
最小二乘法算法机器学习人工智能
最小二乘法一、最小二乘法概念以及应用 最小二乘法(LeastSquaresMethod,LSE)是一种数学优化技术,主要用于寻找最佳拟合给定数据点的函数。它通过最小化观测值与模型预测值之间的差的平方和来估计模型参数。 换成听得懂的话说就是,我们有一组数据(x1,y1),(x2,y2)…(xn,yn),我们也知道他的数学表达式的形式例如y=kx+b(但是不知道k、b的具体值),但是(xn,yn)
- 传感器融合(UWB+IMU+超声波),使用卡尔曼滤波器和3种不同的多点定位算法(最小二乘、递归最小二乘和梯度下降)研究(Matlab代码实现)
科研_研学社
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、传感器介绍(一)UWB(超宽带)(二)IMU(惯性测量单元)(三)超声波传感器三、定位算法(一)卡尔曼滤波器(二)多点定位算法1.最小二乘法2.递归最小二乘法3.梯度下降法四、系统架构五、实验设计六、结果与讨论七、结论2运行结果3参考文献
- 机器学习-期末测试
难以触及的高度
机器学习python人工智能
机器学习-期末测试线性回归1.代码展示#coding=UTF-8#拆分训练集和测试集importmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_split#是线性回归类是sklearn写好的根据梯度下降法fromsklearn.linear_modelimportLinearRegressionimportpand
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- 梯度下降法
小丹丹的梦想后花园
梯度下降法,最通俗易懂的解释。数据分析挖掘与算法1月7日作者:六尺帐篷链接:https://www.jianshu.com/p/c7e642877b0e本文从一个下山场景开始,提出梯度下降算法的基本思想,接着从数学上解释梯度下降算法原理,最后实现一个简单的梯度下降算法实例!梯度下降的场景假设梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e.找
- 梯度下降算法(Gradient Descent Algorithm)
海棠未语
算法机器学习人工智能python
目录一、梯度下降算法简述二、不同函数梯度下降算法表示1、一元函数2、二元函数3、任意多元函数三、梯度计算四、常见的梯度下降法1、批量梯度下降算法(BatchGradientDescent)2、随机梯度下降算法(StochasticGradientDescent)3、小批量梯度下降(Mini-batchGradientDescent)4、梯度下降算法注意点与调优5、冲量梯度下降算法(Momentum
- 【ShuQiHere】SGD vs BGD:搞清楚它们的区别和适用场景
ShuQiHere
机器学习python人工智能
【ShuQiHere】在机器学习中,优化模型是构建准确预测模型的关键步骤。优化算法帮助我们调整模型的参数,使其更好地拟合训练数据,减少预测误差。在众多优化算法中,梯度下降法是一种最为常见且有效的手段。梯度下降法主要有两种变体:批量梯度下降(BatchGradientDescent,BGD)和随机梯度下降(StochasticGradientDescent,SGD)。这两者在如何计算梯度并更新模型参
- 神经网络深度学习梯度下降算法优化
海棠如醉
人工智能深度学习
【神经网络与深度学习】以最通俗易懂的角度解读[梯度下降法及其优化算法],这一篇就足够(很全很详细)_梯度下降在神经网络中的作用及概念-CSDN博客https://blog.51cto.com/u_15162069/2761936梯度下降数学原理
- 人工神经网络通过调整,神经网络怎么调参数
小浣熊的技术
神经网络matlab算法
神经网络算法中,参数的设置或者调整,有什么方法可以采用若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用
- pytorch深度学习基础 7(简单的的线性训练,SGD与Adam优化器)
不是浮云笙
pytorch实战深度学习pytorch人工智能
接下来小编来讲一下一些优化器在线性问题中的简单使用使用,torch模块中有一个叫optim的子模块,我们可以在其中找到实现不同优化算法的类SGD随机梯度下降基本概念定义:随机梯度下降(SGD)是一种梯度下降形式,对于每次前向传递,都会从总的数据集中随机选择一批数据,即批次大小1。参数更新过程:这个参数的更新过程可以描述为随机梯度下降法,随机梯度下降(SGD)是一种简单但非常有效的方法,多用于支持向
- Logistic 回归
零 度°
机器学习回归数据挖掘人工智能
文章目录1.引言2.Logistic回归概述2.1定义与应用场景2.2与线性回归的区别3.原理与数学基础3.1Sigmoid函数3.2概率解释3.3极大似然估计4.模型建立4.1假设函数4.2成本函数4.3梯度下降法5.正则化5.1正则化的目的与类型5.1.1正则化的目的5.1.2正则化的类型5.2L1和L2正则化5.2.1L1正则化5.2.2L2正则化6.多分类问题6.1一对多(OvA)6.2一
- 神奇的微积分
科学的N次方
人工智能人工智能ai
微积分在人工智能(AI)领域扮演着至关重要的角色,以下是其主要作用:优化算法:•梯度下降法:微积分中的导数被用来计算损失函数相对于模型参数的梯度,这是许多机器学习和深度学习优化算法的核心。梯度指出了函数值增加最快的方向,通过沿着负梯度方向更新权重,可以最小化损失函数并优化模型。•反向传播:在神经网络训练中,微积分的链式法则用于计算整个网络中每个参数对于最终损失函数的影响(偏导数),这一过程就是反向
- 机器学习之梯度下降法直观理解
华农DrLai
算法机器学习人工智能数据挖掘深度学习
形象化举例,由上图所示,假如最开始,我们在一座大山上的某处位置,因为到处都是陌生的不知道下山的路,所以只能摸索着根据直觉,走一步算一步。在此过程中,每走到一个位置的时候,都会求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。不断循环求梯度,就这样一步步地走下去,一直走到我们觉得已经到了山脚。当然这样走下
- 【面经——《广州敏视数码科技有限公司》——图像处理算法工程师-深度学习方向】
有情怀的机械男
面试offer面经
目录笔试HR面专业面——60多分钟主管面反问:笔试8道题——简答题+1道编程苹果、香蕉、梨、菠萝,彩色图像如何进行分类?一辆带车牌的汽车,图像亮度整体呈现偏亮状态,如何去提高图像的清晰度?并设计一个准确定位车牌位置的方案。训练集和测试集各5000张,进行目标检测,写出选择的模型以及设计方案?样本量不足怎么去提高检测的准确性?数据增强梯度下降法的优化算法有哪些,各有什么优缺点?损失函数有哪些?优缺点
- 机器学习中梯度下降法的缺点
华农DrLai
人工智能机器学习逻辑回归深度学习大数据
机器学习中的梯度下降法是一种寻找函数最小值的优化算法,广泛应用于训练各种模型,尤其是在深度学习中。尽管其应用广泛,但梯度下降法也存在一些不可忽视的缺点:1.局部最小值和鞍点局部最小值问题:对于非凸函数,梯度下降法可能会陷入局部最小值,而不是全局最小值。这意味着算法可能找到一个看似最优的点,但实际上在整个参数空间中存在更好的解。鞍点问题:在高维空间中,鞍点(梯度为零,但既非局部最小值也非局部最大值的
- Pytorch-Adam算法解析
肆十二
Pytorch语法pytorch算法人工智能Adam
关注B站可以观看更多实战教学视频:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)Hi,兄弟们,这里是肆十二,今天我们来讨论一下深度学习中的Adam优化算法。Adam算法解析Adam算法是一种在深度学习中广泛使用的优化算法,它的名称来源于适应性矩估计(AdaptiveMomentEstimation)。Adam算法结合了两种扩展式的随机梯度下降法的优点,即适应性梯度算
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 如何使用pytorch自动求梯度
浩波的笔记
构建深度学习模型的基本流程就是:搭建计算图,求得损失函数,然后计算损失函数对模型参数的导数,再利用梯度下降法等方法来更新参数。搭建计算图的过程,称为“正向传播”,这个是需要我们自己动手的,因为我们需要设计我们模型的结构。由损失函数求导的过程,称为“反向传播”,求导是件辛苦事儿,所以自动求导基本上是各种深度学习框架的基本功能和最重要的功能之一,PyTorch也不例外。一、pytorch自动求导初步认
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key