是MySQL提供的工具,在select前添加explain关键字,会返回执行计划信息,而不是执行SQL
可以用来分析SQL的执行情况,比如使用哪些索引,扫描哪些行...
注意:如果from包含子查询,仍会执行该子查询,查询结果放入到临时表中
Explain官网入口
辅助学习理解预置表数据:
DROP TABLE IF EXISTS `actor`;
CREATE TABLE `actor` (
`id` int(11) NOT NULL,
`name` varchar(45) DEFAULT NULL,
`update_time` datetime DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `actor` (`id`, `name`, `update_time`) VALUES (1,'a','2017-12-22 15:27:18'), (2,'b','2017-12-22 15:27:18'), (3,'c','2017-12-22 15:27:18');
DROP TABLE IF EXISTS `film`;
CREATE TABLE `film` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(10) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `idx_name` (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `film` (`id`, `name`) VALUES (3,'film0'),(1,'film1'),(2,'film2');
DROP TABLE IF EXISTS `film_actor`;
CREATE TABLE `film_actor` (
`id` int(11) NOT NULL,
`film_id` int(11) NOT NULL,
`actor_id` int(11) NOT NULL,
`remark` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `idx_film_actor_id` (`film_id`,`actor_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `film_actor` (`id`, `film_id`, `actor_id`) VALUES (1,1,1),(2,1,2),(3,2,1);
在select查询语句前面加上explain
关键字即可,sql语句中每有一个select关键字就会输出一行类似执行计划的信息
explain 两个变种
a) explain extended:额外提供一些优化信息。紧随其后通过 show warnings 命令可以 得到优化后的查询语句,从而看出优化器优化了什么。额外还有 filtered 列,是一个百分比的值,rows * filtered/100 可以估算出将要和 explain 中前一个表进行连接的行数(前一个表指 explain 中的id值比当前表id值小的表,id值越大执行的优先级越高,id相同从上往下执行,注意这里的id并非主键)
b) explain partitions:多了个 partitions 字段,如果查询是基于分区表的话,会显示查询将访问的分 区
我的MySQL5.7版本添加explain默认展示了filtered 和partitions 列,extended和partitions关键字未来版本可能会被移除
explain输出结果每一列的含义,截取官网描述如下:
Table 8.1 EXPLAIN Output Columns
Column | JSON Name | Meaning |
---|---|---|
id | select_id |
The SELECT identifier |
select_type | None | The SELECT type |
table | table_name |
The table for the output row |
partitions | partitions |
The matching partitions |
type | access_type |
The join type |
possible_keys | possible_keys |
The possible indexes to choose |
key | key |
The index actually chosen |
key_len | key_length |
The length of the chosen key |
ref | ref |
The columns compared to the index |
rows | rows |
Estimate of rows to be examined |
filtered | filtered |
Percentage of rows filtered by table condition |
Extra | None | Additional information |
explain中的列详细介绍
1. id列
id列的编号是 select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的顺序增长的。 id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行。
2. select_type列
select_type 表示对应行是简单还是复杂的查询。
1)simple:简单查询。查询不包含子查询和union
2)primary:复杂查询中最外层的 select
3)subquery:包含在 select 中的子查询(不在 from 子句中)
4)derived:包含在 from 子句中的子查询。MySQL会将结果存放在一个临时表中,也称为派生表
5)union:在 union 中的第二个和随后的 select
3. table列
这一列表示 explain 的一行正在访问哪个表。 当 from 子句中有子查询时,table列是
格式,表示当前查询依赖 id=N 的查询,于是先执行 id=N 的查询。 当有 union 时,UNION RESULT 的 table 列的值为
,1和2表示参与 union 的 select 行id。
4. partitions列
如果查询是基于分区表的话,partitions 字段会显示查询将访问的分区。
5. type列
这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概范围。
依次从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL
一般来说,得保证查询达到range级别,最好达到ref
NULL:mysql能够在优化阶段分解查询语句,在执行阶段用不着再访问表或索引。例如:在索引列中选取最小值,可以单独查找索引来完成,不需要在执行时访问表(目标数据在主键索引树和二级索引树同时存在时,优先用二级索引树去查,因为二级索引树没有保存全部数据,更轻量效率高)
const, system:mysql能对查询的某部分进行优化并将其转化成一个常量。用于 primary key 或 unique key 的所有列与常数比较时,所有表最多有一个匹配行,读取1次速度比较快。
system是 const的特例,表里只有一条记录匹配时为system
eq_ref:primary key 或 unique key 索引的所有部分被连接使用 ,最多只会返回一条符合条件的记录。
ref:相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一索引的部分前缀,索引要和某个值相比较,可能会找到多个符合条件的行。
简单 select 查询,name是普通索引(非唯一索引):
关联表查询,idx_film_actor_id是film_id和actor_id的联合索引,这里使用到了film_actor的左边前缀film_id部分:
range:范围扫描通常出现在 in(), between ,> ,<, >=
等操作中。使用一个索引来检索给定范围的行。
index:扫描全索引就能拿到结果,一般是扫描某个二级索引,这种扫描不会从索引树根节点开始快速查找,而是直接对二级索引的叶子节点遍历和扫描,速度还是比较慢的,这种查询一般为使用覆盖索引,二级索引一般比较小,所以这种通常比ALL快一些。
ALL:即全表扫描,扫描你的聚簇索引的所有叶子节点。通常情况下这需要增加索引来进行优化。
6. possible_keys列
这一列显示查询可能使用哪些索引来查找。
explain 时可能出现 possible_keys 有列,而 key 显示 NULL 的情况,这种情况是因为表中数据不多,mysql认为索引对此查询帮助不大,选择了全表查询。
如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查 where 子句看是否可以创造一个适当的索引来提高查询性能,然后用 explain 查看效果。
7.key列
这一列显示mysql实际采用哪个索引来优化对该表的访问。 如果没有使用索引,则该列是 NULL。如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 force index、ignore index。
8.key_len列
这一列显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。
举例来说,film_actor的联合索引 idx_film_actor_id 由 film_id 和 actor_id 两个int列组成,并且每个int是4字节。通过结果中的key_len=4可推断出查询使用了第一个列:film_id列来执行索引查找。
key_len计算规则如下:
字符串,char(n)和varchar(n),5.0.3以后版本中,n均代表字符数,而不是字节数,如果是utf-8,一个数字或字母占1个字节,一个汉字占3个字节
char(n):如果存汉字长度就是 3n 字节
varchar(n):如果存汉字则长度是 3n + 2 字节,加的2字节用来存储字符串长度,因为varchar是变长字符串
数值类型
tinyint:1字节
smallint:2字节
int:4字节
bigint:8字节
时间类型
date:3字节
timestamp:4字节
datetime:8字节
如果字段允许为 NULL,需要1字节记录是否为 NULL
索引最大长度是768字节,当字符串过长时,mysql会做一个类似左前缀索引的处理,将前半部分的字符提取出来做索 引。
9. ref列
这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常量),字段名(例:film.id)
10. rows列
这一列是mysql估计要读取并检测的行数,注意这个不是结果集里的行数。
11.filtered 列
该列是一个百分比的值,rows * filtered/100 可以估算出将要和 explain 中前一个表进行连接的行数(前一个表指 explain 中的id值比当前表id值小的表)。
12. Extra列
这一列展示的是额外信息。常见的重要值如下:
1)Using index:使用覆盖索引
覆盖索引定义:mysql执行计划explain结果里的key有使用索引,如果select后面查询的字段都可以从这个索引的树中获取,这种情况一般可以说是用到了覆盖索引,extra里一般都有using index;覆盖索引一般针对的是辅助索引,整个查询结果只通过辅助索引就能拿到结果,不需要通过辅助索引树找到主键,再通过主键去主键索引树里获取其它字段值
2)Using where:使用 where 语句来处理结果,并且查询的列未被索引覆盖
3)Using index condition:查询的列不完全被索引覆盖,where条件中是一个前导列的范围;
4)Using temporary:mysql需要创建一张临时表来处理查询。出现这种情况一般是要进行优化的,首先是想到用索引来优化。
5)Using filesort:将用外部排序而不是索引排序,数据较小时从内存排序,否则需要在磁盘完成排序。这种情况下一般也是要考虑使用索引来优化的。
6)Select tables optimized away:使用某些聚合函数(比如 max、min)来访问存在索引的某个字段是