- 9 万天价激活码?手把手教你免费申请 Manus 邀请码!
前端后花园
前端热门开源项目人工智能ManusAI
Manus爆火,继国产大模型的DeepSeek后又一个国产之光。它是AIagent,可以帮你规划旅游行程、分析股票、做课程PPT、做数据分析报告等等。现在激活码难求,某鱼上炒到了9w了。某鱼上还有代申请Manus账号的单子,实在看不下去了,写一篇如何免费申请Manus邀请码的教程,防止大家被割韭菜。方式一:官网申请最靠谱的办法了,ManusAI官方发布公告了,创始人承诺会优先让waitlist中的
- 保姆级教程:阿里QwQ-32B模型本地部署与企业级应用实战(附万字指南+工具链)
emmm形成中
AI科技前沿pythonjavaai人工智能
保姆级教程:阿里QwQ-32B模型本地部署与企业级应用实战(附万字指南+工具链)目录QwQ-32B核心优势与技术突破本地部署全攻略:从环境配置到模型运行六大企业级应用场景深度解析实战案例:数学推理/代码生成/Agent能力测试常见问题与性能优化指南2025年技术展望与行业影响核心优势1.1模型技术突破维度QwQ-32B特性传统大模型对比参数规模320亿参数(仅需16GB显存)DeepSeek-R1
- 2025最新QwQ-32B模型使用教程:从部署到实战,手把手教你玩转AI推理模型(附保姆级指南)
emmm形成中
AI科技前沿人工智能
2025最新QwQ-32B模型使用教程:从部署到实战,手把手教你玩转AI推理模型(附保姆级指南)目录QwQ-32B模型简介与核心优势本地部署教程:从环境配置到模型运行实战案例:数学、编程与逻辑推理能力测试高级功能:Agent能力与FunctionCall详解常见问题与解决方案资源推荐与学习路径一、QwQ-32B模型简介与核心优势1.1模型简介QwQ-32B是阿里巴巴推出的最新推理模型,仅用320亿
- DeepSeek开源周:面向大模型训练的三个工具包
花生糖@
AIGC学习资料库DeepSeek实用集DualPipeEPLBProfile-dataDeepseek
在2025年的开源周中,DeepSeek推出了一系列旨在优化大规模模型训练效率的工具。这些工具包括DualPipe、EPLB以及Profile-data,它们分别从不同的角度解决了万亿参数模型训练中的算力瓶颈问题,为行业带来了前所未有的加速和效率提升。DualPipe:双向流水线架构的创新DualPipe通过其首创的双向流水线架构,极大地提高了计算与通信的重叠率至92%,相比NVIDIAMegat
- 机器学习模型-从线性回归到神经网络
Earth explosion
机器学习线性回归神经网络
在当今的数据驱动世界中,机器学习模型是许多应用程序的核心。无论是推荐系统、图像识别,还是自动驾驶汽车,机器学习技术都在背后发挥着重要作用。在这篇文章中,我们将探索几种基础的机器学习模型,并了解它们的基本原理和应用场景。1.线性回归基本原理线性回归是最简单的机器学习模型之一。它旨在找到一个最佳拟合线来预测目标变量(通常是连续值)。线性回归假设输入变量和输出变量之间存在线性关系,其数学表达式为:[y=
- 神经网络探秘:原理、架构与实战案例
二川bro
智能AI神经网络人工智能深度学习
神经网络探秘:原理、架构与实战案例前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc在人工智能的浪潮中,神经网络作为核心驱动力之一,正引领着技术革新与产业变革。本文旨在深入剖析神经网络的原理、常见架构,并通过一个实际的代码案例,带领读者亲手实践神经网络的构建与训练过程。无论你是机器学习初学者,还
- 还在蹲Manus的邀请码?别等了!开源版Manus为你快速创建AI工位,给AI一台电脑,然后你就玩去吧!
蚝油菜花
每日AI项目与应用实例开源人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->尽在微信公众号->搜一搜:蚝油菜花就在昨天,一个叫做Manus的AIAgent平台在各大社媒和社区火速的传播开来,引发了各界火热的讨论,相信大家也看到了不少关于Manus的实测和评价了。可当大家跃跃欲试冲
- 【QwQ-32B-Preview】阿里通义QwQ登场MATH测试超OpenAI o1,开源AI推理新王,为数不多可以与OpenAI o1媲美的模型之一
Yukuii_0v0
人工智能aiAI编程自然语言处理
阿里通义千问今天(11月28日)发布《QwQ:思忖未知之界》博文,推出了QwQ-32B-Preview实验性研究模型,在数学和编程领域,尤其在需要深度推理的复杂问题上,具备卓越的AI推理能力。它是少数能与OpenAI的o1匹敌的模型之一,并且是第一个能以宽松许可证下载的模型。QwQ-32B-Preview在Apache2.0许可证下“公开”可用,这意味着它可以用于商业应用。QwQ-32B-Prev
- 量化交易中的模型评估指标有哪些?
股票量化
量化炒股股票炒股程序化交易量化炒股miniQMT股票交易AKShare程序化交易股票投资deepseek
量化交易中的模型评估指标有哪些?在量化交易的世界里,模型评估指标就像是航海者手中的指南针,指引着我们穿越市场的波涛。这篇文章将带你深入了解量化交易中那些至关重要的模型评估指标,让你在交易的海洋中不再迷失方向。引言量化交易,这个听起来既神秘又高大上的领域,其实离我们并不遥远。简单来说,量化交易就是利用数学模型来指导交易决策的过程。而在这个过程中,模型评估指标就是衡量模型好坏的尺子。一个好的模型,不仅
- DeepSeek开源第一弹!突破H800性能上限,FlashMLA重磅开源
开源项目精选
人工智能
FlashMLA是一个针对HopperGPU优化的高效MLA(Multi-HeadLatentAttention)解码内核,支持变长序列处理,现在已经投入生产使用。FlashMLA通过优化MLA解码和分页KV缓存,能够提高LLM(大语言模型)推理效率,尤其是在H100/H800这样的高端GPU上发挥出极致性能。说人话就是,FlashMLA是一种专门为Hopper高性能AI芯片设计的先进技术——一种
- 各大AI平台优缺点分析:选对工具,让AI更高效
JXY_AI
人工智能生活AI编程
人工智能(AI)技术的快速发展,催生了许多强大的AI平台,帮助开发者、企业和研究人员更高效地构建和部署AI应用。然而,不同的AI平台各有优缺点,如何选择合适的平台是许多从业者关心的问题。本文将分析几大主流AI平台的特点,以便大家根据需求做出更好的选择。1.OpenAI(ChatGPT、DALL·E、Codex)优点:自然语言处理(NLP)能力强:ChatGPT在对话、文本生成、翻译等方面表现优异,
- MindSearch: 革新人工智能搜索引擎的未来
2401_87189860
人工智能搜索引擎
MindSearch:革新人工智能搜索引擎的未来在人工智能和大语言模型快速发展的今天,搜索引擎领域正迎来新的变革。由上海人工智能实验室开发的MindSearch项目,正是这场变革中的佼佼者。MindSearch是一个开源的AI搜索引擎框架,它通过模仿人类思维过程,为用户提供深度的AI搜索能力。本文将深入探讨MindSearch的特点、工作原理以及它对未来搜索技术的影响。MindSearch的核心特
- 如何提升OmniParser V2的小元素识别率——YOLOv8 增加 P2 层的性能变化解析
AI-AIGC-7744423
目标跟踪人工智能计算机视觉
YOLOv8增加P2层通过牺牲部分计算效率换取了小目标检测性能的显著提升,尤其适用于高分辨率、小目标密集的场景。开发者需根据具体任务需求,在精度与速度之间进行合理权衡,并通过模型轻量化技术优化部署效果。更多技术细节可参考微软等机构的开源实现136。YOLOv8增加P2层的性能变化解析一、性能提升方向小目标检测精度显著提高原理:P2层对应更高分辨率的浅层特征图(如1/4下采样),能捕捉更细粒度的纹理
- OmniParser技术分析(一)
_深海凉_
深度学习自动化目标检测ui
1.引言通过上篇文章介绍OmniParser:下一代纯视觉UI自动化测试先驱相信大家已经对OmniParser有初步了解,接下来详细介绍下OmniParser使用了哪些技术模型实现了对UI纯视觉的检测和理解。2.整体方案通过阅读OmniParser提供的运行Demo代码知道,其实整个UI纯视觉检测主要分为2部分,涉及3个环节分别是:图片OCR、图片icon检测、图片元素理解,分别使用的模型为:环节
- Manus:成为AI Agent领域的标杆
喜欢猪猪
人工智能
一、引言官网:Manus随着人工智能技术的飞速发展,AIAgent(智能体)作为人工智能领域的重要分支,正逐渐从概念走向现实,并在各行各业展现出巨大的应用潜力。在众多AIAgent产品中,Manus以其独特的技术优势和市场表现,有望成为该领域的标杆。作为资深AI工程师,本文将深入探讨Manus的背景知识、主要业务场景、底层原理、功能的优缺点,并尝试使用Java搭建一个属于自己的Manus助手,以期
- Scira:极简AI驱动搜索引擎
开源项目精选
人工智能
Scira(原名MiniPerplx)是一款极简的AI驱动搜索引擎,可帮助您在互联网上查找信息。它由VercelAISDK提供支持,并可使用Grok2.0等模型进行搜索。Stars数7,186Forks数845主要特点AI驱动的智能搜索:借助Anthropic的模型,快速获取问题的答案,让搜索变得更加智能化。网页搜索:使用Tavily的API来进行高效的网页搜索,无需额外的插件即可快速得到网页内容
- 基于Deepseek的智能辅助论文写作系统
CodeJourney.
算法数据库人工智能能源
在学术的浩瀚海洋中,撰写论文是每一位科研人员、学生都必须面对的挑战。从选题的迷茫,到资料收集的繁琐,再到写作过程中的反复推敲,每一个环节都充满了艰辛。然而,随着人工智能技术的飞速发展,一款名为Deepseek的工具正逐渐崭露头角,为论文写作带来了全新的解决方案。本文将深入探讨Deepseek在论文写作中的应用,以及它如何帮助我们从论文写作的“青铜”一路飙升至“王者”。一、论文写作的困境(一)选题难
- 扎克伯格介绍了 Segment Anything 2 模型,科学家可以用它来研究自然栖息地。在 Siggraph 2024 上,两位科技界的远见卓识者——Nvidia 的黄仁勋和 Meta 的马克·扎
知识大胖
NVIDIAGPU和大语言模型开发教程aimetallm
简介在Siggraph2024上,两位科技界的远见卓识者——Nvidia的黄仁勋和Meta的马克·扎克伯格——进行了一次精彩的交流。他们的讨论涵盖了人工智能的动态进步、混合现实的变革潜力以及开源在促进创新方面的理念。以下是他们从这场重塑我们数字格局的精彩对话中得出的关键见解。“生成式人工智能影响着每个领域,创造出了不可思议的应用并改变了各个行业。”黄仁勋Meta的AI之旅:创新的传承马克·扎克伯格
- 为什么VAE效果不好,但VAE+diffusion效果就好了?
AndrewHZ
深度学习新浪潮算法计算机视觉深度学习扩散模型VAE生成式模型技术分析
1.什么是VAE?VAE(VariationalAutoencoder,变分自编码器)是一种基于概率生成模型的深度学习框架,主要用于数据生成和潜在空间建模。它结合了自编码器(Autoencoder)的结构和变分推断(VariationalInference)的思想,能够从数据中学习有意义的潜在表示,并生成与训练数据相似的新样本。VAE的核心思想编码-解码结构类似传统自编码器,VAE包含两个部分:编
- 美颜sdk在实时音视频中的技术应用
Face Beauty美颜SDK
实时音视频美颜sdk视频特效美颜实时音视频
前言:FaceBeauty美颜SDK是由前相芯科技员工组建创办的新晋美颜厂商品牌,致力于为用户提供更真实自然的美颜效果,以极致性价比,降低高性能美颜的使用门槛。美颜SDK在实时音视频中的应用,通过集成图像处理算法与人工智能技术,实现了对视频流的实时美化处理,显著提升了用户体验。以下从技术模块、性能优化、应用场景及挑战等角度进行详细分析:一、核心技术模块与应用1.人脸检测与特征点定位美颜SDK通过深
- 基础算法训练2
祁小白2024
基础算法算法java广度优先
基础算法1链接目录最长公共前缀两数之和删除字符串中所有相邻重复项n叉树的层序遍历最后一块石头的重量第N个泰波那契数图像渲染迷宫中离入口最近的出口矩阵课程表最长公共前缀14.最长公共前缀-力扣(LeetCode)在解决这道题时,巧妙运用String类的两个方法,能让解题过程变得十分轻松。首先,我们需要确定一个查找公共前缀的标准。这里,我们选择数组中的第一个字符串作为标准。不过,在此之前,必须对边界情
- Phi-4-multimodal:图、文、音频统一的多模态大模型架构、训练方法、数据细节
余俊晖
大语言模型多模态LLM多模态
Phi-4-Multimodal是一种参数高效的多模态模型,通过LoRA适配器和模式特定路由器实现文本、视觉和语音/音频的无缝集成。训练过程包括多阶段优化,确保在不同模式和任务上的性能,数据来源多样,覆盖高质量网络和合成数据。它的设计体现了小型语言模型在多模态任务上的潜力模型架构Phi-4-Multimodal的基础是Phi-4-Mini语言模型,这是一个3.8亿参数的模型,设计为高效处理文本任务
- Ollama设置拉取模型本地保存路径和监听端口
奔跑中的小象
aiollama
在service配置文件中添加环境变量Environment具体操作如下:1.创建保存模型目录文件夹sudomkdir/home/xyh/data/ollama/modelssudochmod777/home/xyh/data/ollama/models2.修改service配置并添加环境变量Environmentsudovi/etc/systemd/system/ollama.service#将
- 算法学习系列(四十五):DFS之剪枝与优化
lijiachang030718
算法深度优先算法学习c++剪枝程序人生笔记
目录引言DFS之剪枝与优化一、小猫爬山二、木棒三、数独四、总结引言关于这个DFSDFSDFS的剪枝和优化确实难度是非常的大,从我这篇文章的思路和代码量上就能看出来不是一般的难度,而且难度不亚于DPDPDP,而且这个DFSDFSDFS也是花费了我三天的时间才基本把这几道例题给搞懂了,并且这种题就是没有固定的模型和套路,每个题都不一样,只有你多做题,这样在考场上才能想到这道题好像跟之前做过的题有点相似
- 当量子计算遇上互联网安全:挑战与革新之路
Echo_Wish
人工智能前沿技术量子计算
当量子计算遇上互联网安全:挑战与革新之路量子计算,一个被誉为下一次科技革命的前沿技术,正在以惊人的速度发展。这项技术以其超越经典计算机的计算能力,为科学、医药和物流等领域带来了颠覆性变革。然而,对于互联网安全来说,量子计算却像是一把双刃剑。一方面,它能够增强加密与安全技术;另一方面,它也威胁着当前的加密体系。作为一名长期关注人工智能和技术前沿的创作者,今天我想带你深入探讨:量子计算的强大能力如何影
- 【笔试面试】秒懂深度学习模型小型化:蒸馏法、剪枝…
聊北辰同学
轻量级神经网络神经网络深度学习机器学习数据挖掘
蒸馏:主要思想是,通过大模型指导小模型学习。剪枝:网络剪枝的主要思想就是将权重矩阵中相对“不重要”的权值剔除,然后再重新finetune网络进行微调。紧凑模型设计:MobileNet的深度可分离卷积shufflenet的逐点群卷积(pointwisegroupconvolution)和通道混洗(channelshuffle),前者通过分组卷积降低计算量,后者促进信息在不同组之间流转
- 在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?
玩人工智能的辣条哥
人工智能人工智能LoRA微调
环境:LoRA微调问题描述:在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?解决方案:在LoRA(Low-RankAdaptation)微调大模型后,提升和优化推理效果可以从以下多维度策略入手,涵盖数据、模型架构、训练策略和后处理技术等方面:1.数据优化数据质量与多样性确保微调数据覆盖目标场景的多样性,避免分布偏差。加入领域相关的高质量数据,清洗噪声数据(如重复、矛盾样本)。
- 机器学习背后的数学芝士
小技工丨
机器学习机器学习人工智能
在当今快速发展的科技领域,机器学习作为人工智能的核心技术之一,正在深刻地改变我们的生活和工作方式。本文将了解一下机器学习背后的关键数学芝士。线性代数:数据处理的基础工具向量与矩阵向量是有序数字的集合,常用于表示数据点,例如用户的特征向量可能包括年龄、性别、收入等信息。矩阵则是二维数组,广泛应用于数据集的表示和变换操作。线性变换线性变换描述了向量在空间中的拉伸、压缩或旋转过程。这类变换在数据预处理、
- springboot中的观察者模式
stayhungerstayflush
spring基础介绍springboot观察者模式后端
SpringBoot中的观察者模式与消息通信机制深度解析引言在现代分布式系统中,模块解耦和高效通信是系统设计的核心挑战。SpringBoot通过其强大的事件驱动模型,为开发者提供了优雅的观察者模式实现方案。本文将深入剖析其实现原理,并通过实战案例展示如何构建松耦合、高扩展的分布式系统。核心机制解析1.观察者模式在Spring中的实现Spring事件模型基于发布-订阅模式,包含三大核心组件:Appl
- C++设计模式-简单工厂模式:从原理、应用、实践指南与常见问题和解决方案深度解析
牵牛老人
C++专栏c++设计模式简单工厂模式
一、简单工厂模式的核心原理1.1模式定义与本质简单工厂模式(SimpleFactoryPattern)是一种创建型的设计模式,其核心思想是通过单一的工厂类根据传入的参数,动态决定创建哪种具体产品类的实例。该模式将对象的创建过程封装在工厂类中,使得客户端无需直接调用具体产品的构造函数,实际上是利用类的多态性,实现用子类的模型创建父类对象。其本质是将对象创建与使用解耦,通过引入中间层(工厂类)来隔离变
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {