Pandas中DataFrame基本函数整理
- 1构造函数
- 2属性和数据
- 3类型转换
- 4索引和迭代
- 5二元运算
- 6函数应用&分组&窗口
- 7描述统计学
- 8从新索引&选取&标签操作
- 9处理缺失值
- 10从新定型&排序&转变形态
- 11Combining& joining&merging
- 12时间序列
- 13作图
- 14换为其他格式
- 15 Python的DataFrame基础使用
1构造函数
DataFrame([data, index, columns, dtype, copy])
2属性和数据
DataFrame.axes
DataFrame.as_matrix([columns])
DataFrame.dtypes
DataFrame.ftypes
DataFrame.get_dtype_counts()
DataFrame.get_ftype_counts()
DataFrame.select_dtypes([include, include])
DataFrame.values
DataFrame.axes
DataFrame.ndim
DataFrame.size
DataFrame.shape
DataFrame.memory_usage()
3类型转换
DataFrame.astype(dtype[, copy, errors])
DataFrame.copy([deep])
DataFrame.isnull()
DataFrame.notnull()
4索引和迭代
```python
DataFrame.head([n])
DataFrame.at
DataFrame.iat
DataFrame.loc
DataFrame.iloc
DataFrame.insert(loc, column, value)
DataFrame.iter()
DataFrame.iteritems()
DataFrame.iterrows()
DataFrame.itertuples([index, name])
DataFrame.lookup(row_labels, col_labels)
DataFrame.pop(item)
DataFrame.tail([n])
DataFrame.xs(key[, axis, level, drop_level])
DataFrame.isin(values)
DataFrame.where(cond[, other, inplace, …])
DataFrame.mask(cond[, other, inplace, …])
DataFrame.query(expr[, inplace])
5二元运算
DataFrame.add(other[,axis,fill_value])
DataFrame.sub(other[,axis,fill_value])
DataFrame.mul(other[, axis,fill_value])
DataFrame.div(other[, axis,fill_value])
DataFrame.truediv(other[, axis, level, …])
DataFrame.floordiv(other[, axis, level, …])
DataFrame.mod(other[, axis,fill_value])
DataFrame.pow(other[, axis,fill_value])
DataFrame.radd(other[, axis,fill_value])
DataFrame.rsub(other[, axis,fill_value])
DataFrame.rmul(other[, axis,fill_value])
DataFrame.rdiv