数据倾斜问题,通常是指参与计算的数据分布不均,即某个key或者某些key的数据量远超其他key,导致在shuffle阶段,大量相同key的数据被发往同一个Reduce,进而导致该Reduce所需的时间远超其他Reduce,成为整个任务的瓶颈。
Hive中的数据倾斜常出现在分组聚合和join操作的场景中,下面分别介绍在上述两种场景下的优化思路。
优化说明
之前提到过,Hive中未经优化的分组聚合,是通过一个MapReduce Job实现的。Map端负责读取数据,并按照分组字段分区,通过Shuffle,将数据发往Reduce端,各组数据在Reduce端完成最终的聚合运算。
如果group by分组字段的值分布不均,就可能导致大量相同的key进入同一Reduce,从而导致数据倾斜问题。
由分组聚合导致的数据倾斜问题,有以下两种解决思路:
1)Map-Side聚合
开启Map-Side聚合后,数据会现在Map端完成部分聚合工作。这样一来即便原始数据是倾斜的,经过Map端的初步聚合后,发往Reduce的数据也就不再倾斜了。最佳状态下,Map-端聚合能完全屏蔽数据倾斜问题。
相关参数如下:
--启用map-side聚合
set hive.map.aggr=true;
--用于检测源表数据是否适合进行map-side聚合。检测的方法是:先对若干条数据进行map-side聚合,若聚合后的条数和聚合前的条数比值小于该值,则认为该表适合进行map-side聚合;否则,认为该表数据不适合进行map-side聚合,后续数据便不再进行map-side聚合。
set hive.map.aggr.hash.min.reduction=0.5;
--用于检测源表是否适合map-side聚合的条数。
set hive.groupby.mapaggr.checkinterval=100000;
--map-side聚合所用的hash table,占用map task堆内存的最大比例,若超出该值,则会对hash table进行一次flush。
set hive.map.aggr.hash.force.flush.memory.threshold=0.9;
2)Skew-GroupBy优化
Skew-GroupBy的原理是启动两个MR任务,第一个MR按照随机数分区,将数据分散发送到Reduce,完成部分聚合,第二个MR按照分组字段分区,完成最终聚合。
相关参数如下:
--启用分组聚合数据倾斜优化
set hive.groupby.skewindata=true;
(1)Map-Side聚合
设置如下参数
--启用map-side聚合
set hive.map.aggr=true;
--关闭skew-groupby
set hive.groupby.skewindata=false;
(2)Skew-GroupBy优化
设置如下参数
--启用skew-groupby
set hive.groupby.skewindata=true;
--关闭map-side聚合
set hive.map.aggr=false;
开启Skew-GroupBy优化后,可以很明显看到该sql执行在yarn上启动了两个mr任务,第一个mr打散数据,第二个mr按照打散后的数据进行分组聚合。