本文基于谷歌云的官方视频:《Introduction to Large Language Models》 ,使用 ChatGPT4 整理而成,希望对大家入门大语言模型有帮助。
本课程主要包括以下 4 方面的内容:
深度学习是机器学习的分支,大语言模型是深度学习的分支。
机器学习是人工智能(AI)的一个子领域,它的核心是让计算机系统能够通过对数据的学习来提高性能。在机器学习中,我们不是直接编程告诉计算机如何完成任务,而是提供大量的数据,让机器通过数据找出隐藏的模式或规律,然后用这些规律来预测新的、未知的数据。
深度学习是机器学习的一个子领域,它尝试模拟人脑的工作方式,创建所谓的人工神经网络来处理数据。这些神经网络包含多个处理层,因此被称为“深度”学习。深度学习模型能够学习和表示大量复杂的模式,这使它们在诸如图像识别、语音识别和自然语言处理等任务中非常有效。
大语言模型是深度学习的应用之一,尤其在自然语言处理(NLP)领域。这些模型的目标是理解和生成人类语言。为了实现这个目标,模型需要在大量文本数据上进行训练,以学习语言的各种模式和结构。如 ChatGPT,就是一个大语言模型的例子。被训练来理解和生成人类语言,以便进行有效的对话和解答各种问题。
生成式AI是一种能够创造新的内容或预测未来数据的人工智能技术。
这种技术包括用于生成文本、图像、音频和视频等各种类型的内容的模型。生成式AI的一个关键特性是,它不仅可以理解和分析数据,还可以创造新的、独特的输出,这些输出是从学习的数据模式中派生出来的。
训练: 训练狗狗为例,可以训练它坐、跑过来、蹲下、保持不动。
如果想训练警犬、导盲犬和猎犬,则需要特殊的训练方法。
大语言模型的训练也采用与之类似的思路。
大型语言模型被训练来解决通用(常见)的语言问题,如文本分类、问答、文档总结和文本生成等。
(1)文本分类:大型语言模型可以通过对输入文本进行分析和学习,将其归类到一个或多个预定义的类别中。例如,可以使用大型语言模型来分类电子邮件是否为垃圾邮件,或将推文归类为积极、消极或中立。
(2)问答:大型语言模型可以回答用户提出的自然语言问题。例如,可以使用大型语言模型来回答搜索引擎中的用户查询,或者回答智能助手中的用户问题。
(3)文档总结:大型语言模型可以自动提取文本中的主要信息,以生成文档摘要或摘录。例如,可以使用大型语言模型来生成新闻文章的概要,或从长篇小说中提取关键情节和事件。
(4)文本生成:大型语言模型可以使用先前学习的模式和结构来生成新的文本。例如,可以使用大型语言模型来生成诗歌、短故事、或者以特定主题的文章。
大语言模型(LLMs)可以基于特定领域的小规模的数据集上进行训练,来定制化解决不同领域如零售、金融、娱乐等的特定问题。
Large(大):在"大语言模型"的上下文中,"大"主要有两层含义。一方面,它指的是模型的参数数量。在这些模型中,参数的数量通常会非常大,达到数十亿甚至数百亿。这使得模型能够学习和表示非常复杂的模式。另一方面,"大"也指的是训练数据的规模。大语言模型通常在大规模的文本数据上进行训练,这种数据可以来自互联网、书籍、新闻等各种来源。
General-purpose(通用):这个词描述的是模型的应用范围。通用语言模型在训练时使用了来自各种领域的数据,因此它们能够处理各种类型的任务,不仅限于某一个特定的任务或领域。这使得这些模型在处理新的、未见过的任务时具有很强的泛化能力。
Pre-trained and fine-tuned(预训练和微调):这是描述模型训练过程的关键词。在预训练阶段,模型在大规模的通用文本数据上进行训练,学习语言的基本结构和各种常识。然后,在微调阶段,模型在更小、更特定的数据集上进行进一步的训练。这个数据集通常是针对某个特定任务或领域的,例如医学文本、法律文本,或者是特定的对话数据。微调可以让模型更好地理解和生成这个特定领域的语言,从而更好地完成特定的任务。
单一模型可用于不同任务:由于大语言模型是通用的,并且具有强大的泛化能力,所以它们可以处理各种类型的任务,比如文本分类、命名实体识别、情感分析、问答系统、文本生成等。这意味着我们可以使用同一个预训练的模型来处理不同的任务,只需要进行相应的微调就可以。这大大减少了开发和维护不同模型的复杂性和成本。
微调过程只需要最小的数据:尽管大语言模型在预训练阶段需要大量的通用文本数据,但在微调阶段,它们通常只需要相对较小的领域特定数据。这是因为模型在预训练阶段已经学习了大量的语言知识和常识,微调阶段主要是让模型适应特定的任务或领域。这使得大语言模型能够在数据稀缺的领域中也能表现出色。
随着更多的数据和参数,性能持续提升:大语言模型的性能通常随着训练数据的增加和模型参数的增加而提升。这意味着,通过训练更大的模型,并使用更多的数据,我们可以获得更好的性能。这是因为更大的模型有更多的参数,能够学习和表示更复杂的模式;同时,更多的数据能够提供更丰富的信息,帮助模型更好地理解语言。
拥有5400亿参数:这是一个庞大的模型,参数数量远超过 GPT-3 的参数数量。这些参数使得 PaLM 能够更好地理解和生成语言。
利用新的 Pathway 系统:PaLM是首个大规模使用 Pathways 系统的模型。Pathways 系统使得 PaLM 能够将训练扩展到 6144 个芯片,这是迄今为止用于训练的最大的基于TPU的系统配置。与之前的大型语言模型相比,这是一个显著的规模提升。
为加速器编排分布式计算:Pathways 系统能够高效地管理分布式计算,使得 PaLM 能够在多个 TPU v4 Pods上进行训练。这个系统的设计使得 PaLM能 够在硬件 FLOPs 利用率上达到 57.8%,这是迄今为止在此规模的大型语言模型中所达到的最高利用率。
Transformer 模型是一种在自然语言处理(NLP)领域中广泛使用的深度学习模型,它最初在 “Attention is All You Need” 这篇论文中被介绍。Transformer 模型的主要特点是使用了自注意力(self-attention)机制,这种机制允许模型在处理序列数据时考虑到序列中所有元素的上下文关系。
Transformer 模型主要由两个部分组成:编码器(Encoder)和解码器(Decoder)。
2012年前的神经网络,我们可以将是否为猫的数据喂给模型,然后给出一张图片让它判断图片中是否是一只猫。
通过生成式语言模型,如 LaMDA、PaLM、GPT 等,它们可以阅读大量的资料,和海量的关于猫相关的知识。我们就可以对它提问,猫是什么?它可以回答出它知道的关于猫的所有特征。
使用预训练的大型语言模型(LLM)进行开发和传统的机器学习开发存在很多不同之处。
使用预训练的大型语言模型(LLM)开发:
传统的机器学习开发:
简单来说,使用预训练的大型语言模型(LLM)开发的主要优势在于简化了开发过程,降低了开发的难度和门槛,而传统的机器学习开发则需要更多的专业知识和资源投入。
问答(QA)是自然语言处理的一个子领域,它处理的任务是自动回答以自然语言提出的问题。
问答模型能够从给定的文本中检索出问题的答案。这在从文档中搜索答案时非常有用。根据所使用的模型不同,问答系统可以直接从文本中提取答案,也可以生成新的文本作为答案。
在自然语言处理中的问答任务,往往需要一定的领域知识。这是因为,要理解和回答特定领域的问题,模型需要有相关的背景知识。例如,如果要回答医学相关的问题,模型需要知道医学术语和基本的医学知识。如果要回答法律相关的问题,模型需要知道法律术语和基本的法律原理。
这种领域知识通常通过训练数据来提供。训练数据中的文本会包含大量的领域知识,模型通过学习这些文本,可以获取到这些知识。然而,这种方式获取的知识可能会有限,因为它只能获取到训练数据中包含的知识。因此,对于一些复杂的领域问题,可能需要专门的领域知识库或者专门训练的领域模型来提供更准确的答案。
生成式 QA,可以直接根据上下文生成自由文本。利用的是文本生成模型,不需要领域知识。
生成式问答是一种自然语言处理中的问答技术,其特点是直接根据上下文生成自由文本作为答案,而不是从原文中提取答案。这种技术通常利用的是文本生成模型,例如Transformer等。
生成式问答“不需要领域知识”。这可能是指在一般情况下,生成式问答模型可以通过训练数据学习到一般的语言知识,而不需要特定领域的知识。然而,这并不意味着领域知识对生成式问答模型没有帮助。在处理特定领域的问题时,如果模型具有相关的领域知识,往往能够生成更准确、更具深度的答案。
在使用语言模型,尤其是生成式语言模型时,如何设计输入的提示词(Prompt)是非常重要的。因为模型的输出(即生成的文本)将根据输入的提示进行生成。好的提示可以引导模型生成有用、准确的文本,而差的提示可能导致模型的输出偏离期望,或者产生含糊不清、语义不明确的结果。
提示设计的过程可能包括考虑提示的语法结构、使用的词汇、上下文信息等因素,以尽可能地引导模型生成期望的响应。
**提示词设计(Prompt Design)**指的是传递给语言模型的指令或信息,它们告诉模型要做什么。提示通常包括一些上下文信息和具体的任务指示。
**提示词工程(Prompt Engineering)**是一种实践,它涉及到开发和优化这些提示,以便更有效地使用语言模型。这可能包括测试不同的提示格式、考虑不同的上下文信息,以及使用一些技术手段(如微调等)来改进模型对提示的理解和响应。在许多情况下,通过精心设计和优化的提示,可以显著提高模型的性能,使其更好地适应各种任务和应用场景。
主要有三种类型的大语言模型,每种都需要以不同的方式进行提示。前两者容易被混淆,但给出的输出非常不同。
1、通用(或原始)语言模型:这些模型根据训练数据中的语言预测下一个词(技术上说,是预测下一个词元)。这种模型通常使用大量的未标记文本进行训练,学习语言的统计规律,但没有特定的任务指向。
2、指令调整模型:这些模型经过训练,以预测对输入中给出的指令的响应。这种模型在通用语言模型的基础上,通过对特定任务数据的训练,使其能够对给定的指令做出适当的响应。这类模型可以理解和执行特定的语言任务,如问答、文本分类、总结、写作、关键词提取等。
3、对话调整模型:这些模型经过训练,以通过预测下一个响应进行对话。这种模型在通用语言模型的基础上,通过对对话数据的训练,使其能够进行对话。这类模型可以理解和生成对话,例如生成聊天机器人的回答。
当模型在给出答案之前首先输出解释答案原因的文本时,它们更有可能得到正确的答案。这被称为"链式思维推理"。也就是说,模型在进行推理时,不仅仅直接给出答案,而是先阐述出达到答案的推理过程或原因,这样可以提高答案的准确性。
第 1 次对话:模型直接得出正确答案的可能性较小。
Q: Roger 有 5 个网球。他买了 2 罐网球。每罐有 3 个网球。他现在有多少个网球?
A:
第 2 次对话:现在,输出更有可能以正确的答案结束。
Q: Roger 有5个网球。他买了2罐网球。每罐有3个网球。他现在有多少个网球?我们逐步思考一下这个问题(Let’s think this through step by step)。
A: Roger最初有5个球。2 罐每罐有 3 个网球,总共是6个网球。5 + 6=11。答案是 11。
一个通用模型在实际应用中有其局限性。针对特定任务的调优可以使大型语言模型(LLMs)变得更可靠。
“一个通用的模型在实际应用中有其局限性”,意味着尽管 LLMs 被训练为理解和生成自然语言,并能够处理广泛的任务,但在实际应用中,它们仍然有限制。例如,它们可能在理解复杂或专业领域的内容方面表现不佳,或者在没有足够相关训练数据的情况下,其预测可能偏离实际。
“针对特定任务的调优可以使大型语言模型(LLMs)变得更可靠”,是在指出通过特定任务的微调,可以改进LLMs 的表现。这种微调通常涉及在特定任务的数据上进一步训练模型,使其更好地适应该任务。例如,如果我们有一个在广泛语料库上预训练的 LLM,我们可以在法律文档上对其进行微调,以提高其在法律问题解答任务上的表现。这种任务特定的调优可以使模型在特定应用上更加可靠和准确。
Model Garden 是 Google 的一个开源项目,旨在为研究者和开发者提供预训练的机器学习模型和相关的训练和优化技术。这些模型覆盖了许多不同的机器学习任务,例如图像分类、物体检测和自然语言处理等。
Model Garden 中的模型分为两大类:语言模型和视觉模型。
这些模型都是为特定的任务进行训练和优化的,可以用来解决一些具体的实际问题。
"调优(Tuning)"是一种通过在新数据上训练模型来使模型适应新领域或一组定制用例的过程。例如,我们可能会收集训练数据并专门为法律或医学领域"调优"大型语言模型(LLM)。
“微调 (Fine tuning)" 是一种训练方法,你可以带来自己的数据集,并通过调整 LLM 中的每个权重来重新训练模型。这需要一个大型的训练任务(真的很大),并且你需要托管你自己微调过的模型。具体来说,微调过程中,你会在你的特定任务数据上继续训练预训练的大型语言模型,使模型的所有参数更适应你的任务。这种方法通常需要大量的计算资源,因为你需要在整个模型上进行训练,这也是为什么这段话中提到的"训练任务很大”。
**微调 (Fine tuning) **通常很昂贵并且在许多情况下不现实。
那么, 有没有更高效的调整方法呢?
这里介绍两种更有效率的大型语言模型(LLM)调优方法:参数高效方法(Parameter-Efficient Methods,PETM)和提示调优(Prompt Tuning)。
“Gen AI Studio” 平台,可以用来微调模型,将模型部署到生产环境,创建聊天机器人,生成图像,以及其他更多功能。
总的来说,"Gen AI Studio"是一个集成了多种AI模型和功能的平台,可以方便用户进行AI模型的微调,部署,以及其他的应用。
Generative AI App Builder 可以用来创建基于生成式人工智能的应用,而且不需要编写任何代码。这个工具使得无需深入了解编程或人工智能的用户也能创建出使用生成式人工智能模型的应用。这些应用可能包括但不限于内容生成、图像生成、音频生成等各种基于生成式人工智能模型的应用。
PaLM API 和 MakerSuite 简化生成性开发周期。
"PaLM API"是为开发者提供方便访问和使用大型语言模型的接口,而"MakerSuite"则是一种便于开发者开始设计和构建生成性AI应用的工具,它提供了在构建应用的过程中可能需要的一系列功能,如迭代优化提示、数据集扩充、模型调优等。
创作不易,如果本文对你有帮助,欢迎点赞、收藏加关注,你的支持和鼓励,是我创作的最大动力。
欢迎加入我的知识星球,知识星球ID:15165241 一起交流学习。
https://t.zsxq.com/Z3bAiea 申请时标注来自CSDN。