- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- MIAOYUN | 每周AI新鲜事儿(06.14-06.20)
人工智能算法机器学习深度学习
紧跟技术浪潮,洞察行业未来,MIAOYUN《每周AI新鲜事儿》,为您精选全球AI领域的最新动态,涵盖AI技术突破、行业动态、趋势发展、前沿政策与学术研究,带您走在智能时代前沿,一起来回顾本周发生的AI新鲜事儿吧!AI开源大模型腾讯混元3D2.1大模型全链路开源6月14日,在CVPR2025(计算机视觉领域顶会之一)上,腾讯混元3D2.1大模型对外全链路开源,其模型权重及架构、训练代码、数据处理流程
- [CVPR 2025] 高效无监督Prompt与偏好对齐驱动的半监督医学分割
alfred_torres
prompt医学图像分割
CVPR2025|优化SAM:高效无监督Prompt与偏好对齐驱动的半监督医学分割论文信息标题:EnhancingSAMwithEfficientPromptingandPreferenceOptimizationforSemi-supervisedMedicalImageSegmentation作者:AishikKonwer,ZhijianYang,ErhanBas,CaoXiao,Pratee
- CVPR2025
摸鱼的肚子
论文阅读深度学习
CVPR论文列表大论文相关,abstactSphereUFormer:AU-ShapedTransformerforSpherical360Perception对360rgb图的深度进行估计CroCoDL:Cross-deviceCollaborativeDatasetforLocalization(没有)SemAlign3D:SemanticCorrespondencebetweenRGB-Im
- CVPR 2024 图像处理方向总汇(图像去噪、图像增强、图像分割和图像恢复等)
点云SLAM
图形图像处理深度学习计算机视觉图像分割图像增强CVPR2024人工智能
1、ImageProgress(图像处理)去鬼影GeneratingContentforHDRDeghostingfromFrequencyView去阴影HomoFormer:HomogenizedTransformerforImageShadowRemoval去模糊UnsupervisedBlindImageDeblurringBasedonSelf-EnhancementLatencyCorr
- CVPR2025|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码)【持续更新】
Kobaayyy
图像处理与计算机视觉论文相关底层视觉计算机视觉算法CVPR2025图像超分辨率图像复原图像增强
CVPR2025|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)1.超分辨率(Super-Resolution)AdaptiveDropout:UnleashingDropoutacrossLayersforGeneralizableImageSuper-ResolutionADD:AGeneralAttribution-DrivenDataAugmentationFrameworkfor
- [paper] Look Into Person
AlgoComp
paperreading计算机视觉
(CVPR2017)LookintoPerson:Self-supervisedStructure-sensitiveLearningandANewBenchmarkforHumanParsingPaper:http://www.linliang.net/files/CVPR17_LIP.pdfProject:http://hcp.sysu.edu.cn/lip/index.phpCode:htt
- 会议论文_AI会议 || 如何rebuttal学术论文?
深度强化学习实验室报道来源:https://zhuanlan.zhihu.com/p/104298923作者:魏秀参编辑:DeepRL最近,恰逢CVPR2020rebuttal之前,本文就rebuttle相关的内容进行总结,学术论文是发布自己或团队最新研究进展正式且最快捷的途径,也是和同行交流想法最方便、高效的方式。当同行评议(Peerreview)作为学术成果正式发布的必经之路已运行200余年[
- 【2025CVPR】基于CNN-Transformer的高效量化EfficientQuant模型
清风AI
计算机视觉算法深度学习算法详解及代码复现cnntransformer人工智能深度学习计算机视觉python神经网络
目录一、研究背景与挑战二、核心方法:EfficientQuant架构1.结构感知块识别算法2.卷积块的均匀量化3.Transformer块的Log2量化三、创新点与优势1.结构感知量化策略2.高效硬件适配3.边缘部署友好四、实验验证1.数据集与指标2.对比实验(1)与其他PTQ方法的对比(2)边缘设备实测五、代码实现要点1.Log2量化核心代码2.模型部署流程六、可视化分析1.权重分布对比2.边缘
- RAG 工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了
代码讲故事
学术相关自动驾驶人工智能机器学习RAGCVPRQanythingFastGPT
RAG工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了。本文详细比较了四种RAG工业落地方案——Qanything、RAGFlow、FastGPT和智谱RAG,重点分析了它们在知识处理、召回模块、重排模块、大模型处理、Web服务和切词处理等方面的具体实现。Qanything在rerank模块设计上
- CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR2025|MIMO:支持视觉指代和像素对齐的医学视觉语言模型论文信息标题:MIMO:Amedicalvisionlanguagemodelwithvisualreferringmultimodalinputandpixelgroundingmultimodaloutput作者:YanyuanChen,DexuanXu,YuHuang,等单位:北京大学软件与微电子学院、计算机科学学院、第六医
- YOLOv2 中非极大值抑制(NMS)机制详解与实现
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习
YOLOv2中NMS的详解一、什么是NMS?定义:NMS(非极大值抑制)是一种目标检测中的后处理技术,用于去除重复预测的边界框,保留置信度最高且不重叠的边界框。目标:提高检测结果的准确性;避免同一物体被多次检测;减少误检和冗余框;二、YOLOv1中的NMS实现来源依据:来自YouOnlyLookOnce:Unified,Real-TimeObjectDetection(CVPR2016)输出结构回
- 2022-2023 ICCV、ECCV、CVPR关于有感自动驾驶的论文
木寒夏
自动驾驶人工智能机器学习
2022-2023ICCV、ECCV、CVPR关于有感自动驾驶的论文1全景分割【ECCV2022】|4D-STOP:基于时空对象方案生成和聚合的4DLiDAR全景分割|4D-StOP:PanopticSegmentationof4DLiDARUsingSpatio-TemporalObjectProposalGenerationandAggregation|论文链接|代码链接【ECCV2022】|
- 2024 CVPR Video ReCap Recursive Captioning of Hour-Long Videos Methods Notes
努力还债的学术吗喽
videocaption人工智能深度学习神经网络python自然语言处理计算机视觉
本文为个人论文核心内容Method精读笔记摘录,原文为2024CVPRVideoReCapRecursiveCaptioningofHour-LongVideos,需要更详细的论文精读Markdown解析,关注私戳包主领取在这里提供原文链接https://arxiv.org/pdf/2402.13250文章目录0.Abstract在这里插入图片描述1.Introduction【SimpleConc
- 图像匹配算法 笔记2025
AI算法网奇
深度学习宝典计算机视觉人工智能
目录1.RoMa(RobustDenseFeatureMatching,CVPR2024)OmniGlue2.Deep‑Image‑Matching(2024)3.OpenGlue️4.XFeat(CVPR2024)⚡5.LightGlue(ICCV2023)6.LiftFeat(ICRA2025)7.DMESA(2024)1.RoMa(RobustDenseFeatureMatching,CVP
- 【CVPR 2025】1 论文模板中文版详细指南:从格式到提交要求
【CVPR2025】1论文模板中文版详细指南:从格式到提交要求写在最前面1.论文类型和使用的模板2.摘要部分格式3.论文正文格式要求4.页边距和页码设置5.标题与字体规范6.数学公式和引用7.脚注与参考文献8.图表与颜色的使用9.最终版本提交要求10.补充材料的处理总结你好呀!我是是Yu欸2024每日百字篆刻时光,感谢你的陪伴与支持~欢迎一起踏上探险之旅,挖掘无限可能,共同成长!写在最前面版权声明
- 【论文解读】CVPR 2024 DSL-FIQA :全新人脸面部图像质量评估算法(附论文地址)
牧锦程
论文解读算法
论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_DSL-FIQA_Assessing_Facial_Image_Quality_via_Dual-Set_Degradation_Learning_and_CVPR_2024_paper.pdf这篇论文标题为"DSL-FIQA:AssessingFacialImageQu
- 大模型理解与生成三维点云:CVPR《GPT4Point: A Unified Framework for Point-Language Understanding and Generation》介绍
AI菜鸟
大语言模型文献调研语言模型3d
大模型理解与生成三维点云:CVPR2024论文《GPT4Point:AUnifiedFrameworkforPoint-LanguageUnderstandingandGeneration》本文是关于CVPR2024最新论文《GPT4Point:AUnifiedFrameworkforPoint-LanguageUnderstandingandGeneration》的简要介绍。GPT4Point是
- CVPR 2025 看点:扩散模型如何颠覆零样本学习
Angelina_Jolie
计算机视觉学习机器学习深度学习
扩散模型(DiffusionModel)是一种生成式模型,能够逐步模拟数据的生成过程。它通过一系列的反向扩散过程,将噪声逐步去除,最终生成与训练数据相似的样本。扩散模型近年来在图像生成、文本生成等领域取得了显著成果,能够生成质量极高且多样性丰富的内容。其核心思想是将数据分解成一系列的噪声步骤,然后通过反向过程还原回原始数据,因此被视为一种逐步逼近真实数据分布的有效方法。在零样本学习(Zero-Sh
- 【2025CVPR】模型融合新范式:PLeaS算法详解(基于排列与最小二乘的模型合并技术)
清风AI
计算机视觉算法深度学习算法详解及代码复现算法python神经网络人工智能深度学习计算机视觉
本文深入解析ICLR2025顶会论文《PLeaS:MergingModelswithPermutationsandLeastSquares》,揭示模型融合领域突破性进展.一、问题背景:模型合并的核心挑战随着开源模型的爆发式增长,如何高效合并多个专用模型成为关键挑战。传统方法存在三大痛点:初始化依赖:现有方法(如TaskArithmetic)要求模型源自相同预训练基础尺寸僵化:合并后模型必须保持原始
- [2025CVPR]Multi-Layer Visual Feature Fusion in Multimodal LLMs 多模态大语言模型中的多层视觉特征融合
清风AI
计算机视觉算法深度学习算法详解及代码复现语言模型人工智能自然语言处理
深入解析:多模态大语言模型中的多层视觉特征融合——原理、实践与最佳方案论文:Multi-LayerVisualFeatureFusioninMultimodalLLMs:Methods,Analysis,andBestPractices一、问题本质:为什么需要多层视觉特征?当前多模态大语言模型(MLLMs)存在两大核心痛点:视觉层选择随意性:现有方法(如MiniCPM、LLaVA)常仅用最后一层特
- 视觉前沿算法复现环境配置1——2025CVPR风格迁移网络SaMam
张书名
视觉前沿算法复现环境配置算法
本文记录2025CVPR风格迁移网络——SaMam的环境配置方法。风格迁移网络的目的是首先学习模板图像的风格样式,然后通过深度学习方法把待转换的图像转换成与模板图像相似的风格样式,这种方法可以考虑用在目标检测等场景中对数据集进行扩增,达到丰富数据集的目的。它的效果可以直观地通过下面这张图展示出来:代码的github官网链接为:https://github.com/Chernobyllight/Sa
- 论文阅读笔记—— Multi-attentional Deepfake Detection
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录Multi-attentionalDeepfakeDetection背景创新贡献方法注意图正则化的区域独立性损失注意力引导的数据增强实验Multi-attentionalDeepfakeDetection来源:CVPR2021作者:HanqingZhao1WenboZhou1,†DongdongChen2TianyiWei1WeimingZhang1,†NenghaiYu1单位:Unive
- CVPR2023最佳论文候选 | MAC: 基于极大团的3D配准
计算机视觉工坊
3D视觉从入门到精通macos3d
本文作者:3D视觉工坊@Vallee|来源:3D视觉工坊GitHub代码:https://github.com/zhangxy0517/3D-Registration-with-Maximal-Cliques(暂未开源)3D点云配准(PCR)是计算机视觉中的一个基本问题,其目的是寻找对齐点云对的最优位姿。本文提出了一种基于极大团(Maximalcliques,MAC)的3D配准方法,其关键思想是放
- CVPR 2025 | 迈向可泛化的场景变化检测
小白学视觉
计算机顶会顶刊论文解读深度学习计算机视觉人工智能计算机顶会论文解读CVPR
论文信息题目:TowardsGeneralizableSceneChangeDetection迈向可泛化的场景变化检测作者:Jae-wooKim、Ue-hwanKim论文创新点提出全新任务公式化方法:提出GeSCD,首次全面解决场景变化检测研究中的泛化问题和时间一致性问题,为该领域研究提供新的方向与思路。设计零样本场景变化检测模型:设计GeSCF模型,这是首个零样本场景变化检测模型。它以零样本方式
- 《Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset》概述
一只工程狮
ComputerVisionPaper
《QuoVadis,ActionRecognition?ANewModelandtheKineticsDataset》概述引言:最近阅读了本篇论文,这是一篇发表在CVPR’17年的文章,总体上的贡献在于发布了一个新的数据集以及对3D卷积+Two-Stream方法的结合形成一个新的网络架构(I3D),以下是对本篇论文的概述,如有错误,欢迎留言指正。一、主要贡献:公布了新的HumanActionVid
- 腾讯混元2025CVPR论文全解读:6篇论文速通大模型前沿
zhangjiaofa
DeepSeekR1&AI人工智能大模型大语言模型3D生成模型视频生成模型
一大语言模型【论文1】Insight-V:ExploringLong-ChainVisualReasoningwithMultimodalLargeLanguageModels(Insight-V:大语言模型中的长思维链视觉推理探索)大语言模型(LLMs)通过更多的推理展现出了更强的能力和可靠性,从思维链提示发展到了OpenAI-o1这样具有较强推理能力的模型。尽管人们为改进语言模型的推理做出了种
- 【CVPR2023】《A2J-Transformer:用于从单个RGB图像估计3D交互手部姿态的锚点到关节变换网络
深研 AI Lab
手部重建前沿论文解析transformer3d深度学习
这篇论文的标题是《A2J-Transformer:Anchor-to-JointTransformerNetworkfor3DInteractingHandPoseEstimationfromaSingleRGBImage》,作者是ChanglongJiang,YangXiao,CunlinWu,MingyangZhang,JinghongZheng,ZhiguoCao,和JoeyTianyiZh
- DexArt Benchmarking Generalizable Dexterous Manipulation with Articulated Objects
好气呀
具身智能铰接物体机器人
文章目录概述概述accepted:CVPR2023项目主页文章解读参考: RL的工作,很清晰的idea,后续可以读代码项目仓库
- CVPR 2024 视频处理方向总汇(视频监控、视频理解、视频识别和视频预测等)
点云SLAM
图形图像处理计算机视觉音视频视频处理python视频监控视频理解
1、视频处理总汇LearningfromOneContinuousVideoStreamDeepVideoInverseToneMappingBasedonTemporalCluesVTimeLLM:EmpowerLLMtoGraspVideoMomentsCombiningFrameandGOPEmbeddingsforNeuralVideoRepresentationLearningtoPre
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,