- Hive JDBC 大数据查询场景下的 Socket 读超时问题及实战解决方案
窝窝和牛牛
大数据hivehadoop
文章目录HiveJDBC大数据查询场景下的Socket读超时问题及实战解决方案问题背景️解决方案方案一:通过JDBCURL直接配置超时(推荐)方案二:动态设置全局loginTimeout(兼容旧版本)总结与建议HiveJDBC大数据查询场景下的Socket读超时问题及实战解决方案问题背景在使用HiveJDBC执行查询时,偶发SocketTimeoutException异常,堆栈显示在ResultS
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 决策树 vs 神经网络:何时使用?
HP-Succinum
机器学习决策树神经网络算法
目录1.决策树(DecisionTrees)1.1特点1.2优点1.3缺点1.4适用场景2.神经网络(NeuralNetworks)2.1特点2.2优点2.3缺点2.4适用场景3.何时选择哪种方法?4.结合使用的可能性5.总结在机器学习领域,决策树(DecisionTrees)和神经网络(NeuralNetworks)是两种常见但风格截然不同的算法。它们各自适用于不同类型的问题,本文将介绍它们的特
- 使用 Dlib 库进行人脸检测和人脸识别
萧鼎
python基础到进阶教程计算机视觉人工智能python人脸识别人脸检测
使用Dlib库进行人脸检测和人脸识别什么是Dlib?Dlib是一个广泛使用的C++库,提供了多种用于机器学习和计算机视觉的工具。它包含了人脸检测、人脸识别、物体检测、图像处理等功能。Dlib具有高效、易用的Python接口,因此它也被广泛应用于Python中进行深度学习和计算机视觉任务。安装Dlib首先,我们需要在Python环境中安装Dlib库。你可以通过pip进行安装:pipinstalldl
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- AI与大数据融合:技术路径与行业赋能
互联网Ai好者
人工智能大数据
在数字化浪潮中,数据已成为驱动社会与商业变革的核心生产要素。据IDC预测,2025年全球数据总量将增长至175ZB,其中物联网设备、社交媒体及企业数字化系统贡献了80%的增量数据。面对海量异构数据的处理需求,传统分析工具已显现出明显局限:Gartner研究指出,仅35%的企业能有效利用其数据资产。在此背景下,人工智能技术通过算法突破与算力跃迁,正重塑大数据价值挖掘范式,构建从数据感知到决策闭环的全
- Flink的市场竞争力:大数据浪潮中的“潜力股”还是“青铜”?
狮歌~资深攻城狮
大数据
Flink的市场竞争力:大数据浪潮中的“潜力股”还是“青铜”?嘿,各位小伙伴!今天咱来聊聊Flink在市场中的竞争力这个超有意思的话题。你要是搞大数据的,那肯定对Flink不陌生;要是还不太懂的,也别担心,咱就像唠家常一样把这事给你讲清楚。一、Flink市场竞争力啥意思?咱先说说这市场竞争力是个啥。打个比方,它就好比一场商场大促,每个品牌都在拼命展示自己的优势,吸引顾客掏钱包。Flink在市场里也
- Kimball维度模型之数据仓库灵魂总线架构
ByteCodeLabs
维度数据仓库设计数据仓库架构
目录一总线架构(BusArchitecture)1总线矩阵(BusMatrix)2Mapping文档二一致性维度(ConformedDimension)三一致性事实(ConformedFact)在数据仓库领域,深刻理解基本概念是确立强大数据管理体系的关键。数据仓库作为一个庞大而复杂的系统,其核心概念涉及多维体系结构、总线架构等关键要素。首要的是理解数据仓库的架构,例如Multidimensiona
- Java 大视界 -- Java 大数据在智能安防入侵检测与行为分析中的应用(108)
青云交
大数据新视界Java大视界java大数据智能安防入侵检测实时流处理LSTM联邦学习
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 基于 Java 的大数据分布式任务调度系统设计与实现(117)
青云交
大数据新视界Java大视界java大数据分布式分布式任务调度系统设计调度算法容错机制
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 量化投资与算法交易
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介量化投资(Quantitativeinvestment)和算法交易(AlgorithmicTrading),两者是近几年兴起的两个热门词汇。市场对这两个词汇的认识也是逐渐加深。在过去几年里,人们普遍认为,算法交易和机器学习结合是未来股票、期货等金融产品的必然趋势。机器学习是由多个数据源(如财务报表、交易历史数据、社交网络数据等)自动分析生成的模型,能够预测出股价
- Unity AI 技术浅析(二)
爱研究的小牛
AIGC—游戏制作AIGC—虚拟现实unity人工智能游戏引擎AIGC机器学习深度学习
UnityAI是Unity引擎中集成的智能技术,旨在为游戏开发者、虚拟现实(VR)和增强现实(AR)应用开发者提供强大的AI工具和功能。UnityAI涵盖了从智能代理(Agents)、机器学习(MachineLearning)到自然语言处理(NLP)等多个领域。一、UnityAI的工作原理1.智能代理(Agents)UnityAI的核心之一是智能代理(Agents),这些代理可以模拟游戏中的非玩家
- Paper Reading | AI & 数据库融合经典论文回顾
数据库人工智能阅读
人工智能(AI)和数据库(DB)在过去的50年里得到了广泛的研究,随着数据库近年来的不断发展,数据库开始与人工智能结合,数据库和人工智能(AI)可以相互促进。一方面,AI可以使数据库更加智能化(AI4DB)。例如,传统的数据库优化技术无法满足大规模数据库实例、各种应用程序和多样化用户的高性能要求,尤其是在云上。幸运的是,基于机器学习的技术可以缓解这个问题。另一方面,数据库技术可以优化AI模型(DB
- 2024年Python最新蓝桥杯 基础练习全解 答案+解析 共17题 python,三年经验Python开发面经总结
2401_84139963
程序员python学习面试
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- 机器学习——使用分类特征的一种独热编码,
小卷心菜.
机器学习人工智能
在我们目前看到的例子中,每个特性只能具有两个可能的值中的一个,耳朵形状不是尖的就是软的,脸型不是圆就是不圆,胡须不是存在就是不存在,但是如果特性可以具有两个以上的离散值呢?如何使用一个热编码来解决这样的特性?下图是我们宠物收养中心申请的新培训集,所有的数据都是一样的,除了耳形特征有尖软之外还有椭圆形,所以这个特征仍然是一个分类值特征,但它可以有三个可能的值,而不仅仅是两个可能的值,这意味着当你在这
- C、C++ 与 C# 的区别及应用场景
xl.liu
c语言c++c#
C、C++与C#的区别及应用场景随着信息技术的快速发展,编程语言的选择对于项目成功至关重要。C、C++和C#是三种广泛使用的编程语言,它们各自具有独特的特点和适用领域。本文将基于当前IT行业的发展趋势,探讨这三种语言之间的主要差异,以及它们各自的优缺点和应用场景。IT行业的现状和发展趋势在当今的IT行业中,云计算、大数据、人工智能(AI)以及物联网(IoT)等技术正在引领新一轮的技术革新。这些技术
- 深度学习的数学之魂:传统机器学习的超越者
洋葱蚯蚓
机器学习深度学习机器学习人工智能经验分享个人开发数据挖掘
深度学习的数学之魂:传统机器学习的超越者前言第一部分:神经元的数学语言1.1神经元模型的启示1.2激活函数的非线性魔法第二部分:网络结构的层次之美2.1网络结构的多样性2.2层次结构的力量第三部分:图像的力量与直观理解3.1图表与动图的辅助作用3.2直观理解的桥梁第四部分:深度与专业的对话4.1深度学习与传统机器学习的比较4.2专业性强的技术分析第五部分:数学原理的深度剖析5.1神经网络的数学表达
- 机器学习与深度学习里生成模型和判别模型的理解
程序员羊羊
机器学习深度学习人工智能php学习chatgpt前端
两个模型是啥我们从几句话进入这两个概念:1、机器学习分为有监督的机器学习和无监督的机器学习;2、有监督的机器学习就是已知训练集数据的类别情况来训练分类器,无监督的机器学习就是不知道训练集的类别情况来训练分类器;3、所以说,有监督的机器学习可以抽象为一个分类task,而无监督的基本完成的是聚类;4、有监督的机器学习中,我们可以概述为通过很多有标记的数据,训练出一个模型,然后利用这个,对输入的X进行预
- 计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
程序员Linc
计算机视觉计算机视觉机器学习深度学习机器视觉
一、计算机视觉(CV)与机器视觉(MV):从学术研究到工业落地的分水岭1.定义与目标差异计算机视觉(CV)目标是赋予计算机类似人类的视觉理解能力,通过算法对图像或视频中的目标进行识别、跟踪和语义理解。其核心是研究如何从二维图像反推三维世界的结构和规律。例如,自动驾驶中通过多摄像头融合实现道路场景理解,属于典型的CV任务。机器视觉(MV)聚焦于工业场景的自动化检测与控制,强调实时性和精准性。MV系统
- 分钟级降水预报API:精准掌控天气变化
api
前言在瞬息万变的天气面前,精准的预报信息显得尤为重要。传统的天气预报往往以小时为单位,难以满足人们对精细化天气信息的需求。而分钟级降水预报API的出现,则打破了这一局限,为各行各业带来了更精准、更及时的降水预报服务。什么是分钟级降水预报API?分钟级降水预报API是一种基于先进气象算法和大数据分析的应用程序接口,能够提供国内任一经纬度未来2小时内,每分钟降水量的精细化预报数据。用户只需通过简单的A
- 【人工智能】大模型的Scaling Laws(缩放定律),通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。
本本本添哥
013-AIGC人工智能大模型人工智能深度学习机器学习
缩放定律(ScalingLaws)是人工智能领域中关于大模型性能提升的重要理论,其核心思想是通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。这一理论最早由OpenAI在2020年提出,并在随后的研究中得到了广泛验证和应用。ScalingLaws就像是指导手册一样,告诉我们在构建和训练AI模型时应该注意什么,以最经济有效的方式得到最好的成果。这有助于推动技术进步的同时也促进了可持
- JAVA学习-练习试用Java实现“使用神经网络算法对大数据集进行模式识别和筛选”
守护者170
java学习java学习
问题:实现一个Java程序,使用神经网络算法对大数据集进行模式识别和筛选。解答思路:要实现一个使用神经网络算法对大数据集进行模式识别和筛选的Java程序,我们可以使用一个简单的多层感知器(MLP)模型。以下是一个使用Java实现的简单示例,其中使用了'java.util'包中的数据结构和算法。一、在这个例子中,我们将使用以下步骤:1.准备数据集(这里我们将随机生成一些数据)。2.定义一个简单的多层
- 学生行为习惯画像可视分析平台
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
学生行为习惯,画像分析,可视化,机器学习,数据挖掘,教育科技1.背景介绍随着教育信息化进程的不断加速,海量教育数据正在被生成和积累。这些数据蕴含着丰富的学生行为信息,例如学习时间、学习内容、学习方式、学习效果等。有效挖掘和分析这些数据,能够帮助教育工作者深入了解学生的学习习惯和行为模式,从而为个性化教学、精准指导和学习效果提升提供重要支撑。然而,传统的教育数据分析方法往往局限于简单的统计描述,难以
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 深圳传音控股AI算法岗内推
飞300
人工智能pythonjava业界资讯
1扎实的数学基础,熟练掌握机器学习相关的数学知识。2熟悉常用的机器学习算法,掌握常用的深度学习模型与编程实践。3熟悉Pytorch或TensorFlow等深度学习框架,有一定项目经验。4良好的沟通协调能力,执着的专业精神。5参与部门AI创新项目,包括自动化测试平台、BPM流程管理等项目开发登录链接:transsion.zhiye.com/campus/jobs填写我的推荐码:EVHPB3投递,简历
- 基于TableStore的海量气象格点数据解决方案实战
阿里云云栖号
数据存储与数据库exceptionJava核心技术
前言气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点。气象数据中大量的数据是时空数据,记录了时间和空间范围内各个点的各个物理量的观测量或者模拟量,每天产生的数据量常在几十TB到上百TB的规模,且在爆发性增长。如何存储和高效的查询这些气象数据越来越成为一个难题。传统的方案常常采用关系型数据库加文件系统的方式实现这类气象数据的存储和实时查询,这种方案在可扩展性、可维护性和性能上都
- 大数据与物联网(IoT)的完美融合:驱动智能新时代
Echo_Wish
大数据高阶实战秘籍大数据物联网python人工智能
大数据与物联网(IoT)的完美融合:驱动智能新时代大家好,我是你们的大数据探索者Echo_Wish。今天,我们将深入探讨大数据与物联网(IoT)整合的重要性及其在现代科技中的应用。物联网通过连接大量智能设备,生成海量数据;而大数据技术则赋予我们从这些数据中提取有价值信息的能力。当两者结合在一起时,能够为各行各业带来革命性的变化,推动智能时代的到来。一、大数据与物联网的基本概念1.物联网(IoT)物
- 基于NLP的客户意见分析:从数据到洞察
Echo_Wish
Python算法Python笔记自然语言处理人工智能
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D