数据分析师如何搭建数据运营指标体系?

指标体系的设计是一个业务数据化的过程。好的指标设计能够抽象目标具体化,具有直接实践意义。

1)什么是指标

通常我们讲述的指标是指将业务单元精分后量化的度量值,譬如:DAU、订单数、金额等。当然,原子指标还会基于维度、修饰词、统计口径而构建出派生指标。指标的核心意义是它使得业务目标可描述、可度量、可拆解。

2)什么是好指标

好的数据指标是比较性的,可以是一个比率。因为比率的可操作性强、天生比较性指标、适用于比较各种因素间的相生和相克。例如:“本周转化率比上周高0.5个百分点”显然比“转化率为2%”更有意义。会计和金融分析师仅需迅速查看几个比率就能对一个公司的基本状况做出判断。例如:市盈率、毛利率、利润率,等等。

好的数据指标是简单易懂的。如果人们不能容易记住或讨论某个指标,那么通过改变它来改变公司的作为将会十分困难。

好的数据指标可以衡量当前业务的真实情况。

好的数据指标会改变行为。这是最重要的评判标准。

3)什么是指标体系

将数据指标系统性的组织起来,可以按照业务模型。指标体系会对按照指标不同的属性分类及分层。

指标不成体系会怎样?

  • 从业务视角看:经常碰到的一种现象是业务上线了之后发现数据不够用,缺指标或缺维度。
  • 从技术视角看:基于需求的变更,业务团队技术同学将需要重新去更改设计和开发埋点,数据团队技术则需要重新采集、清洗、存储数据。

4)常见指标体系构建过程

业务理解 业务数据化
业务目标/问题 结果性目标

你可能感兴趣的:(数据分析)