求解仿射变换矩阵

仿射变换是图形学中经常用到的方法,通常但是仿射变换的系数是未知的,需要找到变换前后的三对对应点进行求解。

from affine import Affine
import numpy as np

参考文献
矩阵最小二乘法求解仿射变换矩阵

def solve_affine(init_points, goal_points) -> Affine:
    # 分别整理成上面分析的6x6和6x1的矩阵
    # 先定义变量保留6个坐标的值
    (ax, ay), (bx, by), (cx, cy) = init_points
    (ax1, ay1), (bx1, by1), (cx1, cy1) = goal_points

    A = np.array([
        [ax, ay, 1, 0, 0, 0],
        [0, 0, 0, ax, ay, 1],
        [bx, by, 1, 0, 0, 0],
        [0, 0, 0, bx, by, 1],
        [cx, cy, 1, 0, 0, 0],
        [0, 0, 0, cx, cy, 1]
    ])

    B = np.array([ax1, ay1, bx1, by1, cx1, cy1]).reshape(6, 1)  # 比手写6X1矩阵要省事
    M = np.linalg.inv(A.T @ A) @ A.T @ B  # 套公式
    
    M=M.flatten().tolist()
    return Affine(*M) #转换成Affine对象

A = [[0,0], [50, 0], [50, 50]]
B = [[30, 30], [130, 30], [130, 130]]

transform=solve_affine(A,B)

for a,b in zip(A,B):
    print(a,b,transform*a)

你可能感兴趣的:(矩阵,numpy,线性代数,图像处理)