- 国内外AI搜索产品盘点
Suee2020
人工智能
序号AISearch产品名简介网站开发者1Perplexity强大的对话式AI搜索引擎https://www.perplexity.aiPerplexity2GensparkAIAgent搜索引擎https://www.genspark.aiMainFunc(景鲲、朱凯华)3Kimi.ai智能助手https://kimi.moonshot.cn/月之暗面(杨植麟)4秘塔AI搜索AI搜索引擎http
- 芯谷78M05:三端正电压调节器的稳定之选
青牛科技实业01
芯谷单片机嵌入式硬件散热风扇智能家居科技音频限幅便携式音频
在电子电路设计中,稳定的电源供应是确保系统正常运行的关键因素之一。78M05作为一款经典的三端正电压调节器,以其简单、可靠和高效的特性,成为了众多工程师在5V电源设计中的首选。本文将深入探讨芯谷78M05的特性、电气参数、典型应用电路以及使用注意事项,帮助读者全面了解这一经典芯片。一、产品概述芯谷78M05是一款三端正电压调节器,属于78MXX系列固定电压调节器集成电路的一员。该芯片能够提供稳定的
- WebRTC的ICE之STUN协议
chen_song_
WebRTC源码探秘webrtc音视频
WebRTC的ICE之STUN协议WebRTC的ICE之STUN协议WebRTC的ICE之STUN协议前言一、STUN协议二、STUN协议头格式三、STUNHeader四、STUNMessageType1、C0C12、STUN信息类型3、大小端模式五、StunMagicCookie六、TransactionID事务ID七、STUNMessageBody八、RFC3489定义的属性九、WebRTC中
- WebRTC中音视频服务质量QoS之RTT衡量网络往返时延的加权平均RTT计算机制详解
chen_song_
WebRTC源码探秘webrtc音视频网络
WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解前言一、RTT网络往返时延的原理1、基于发送端(SR/RR模式)①.基本定义②.计算RTT网络往返时延的原理③发送Sender
- Android Framework 之了解系统启动流程二
Bonnie_cat
android
AndroidFramework源码阅读系列篇章有:系统启动流程一之init进程和zygote进程启动分析系统启动流程二之SystemServer进程启动分析1.SystemServer进程启动分析在系统启动流程一之init进程和zygote进程启动分析中分析zygote进程时,我们知道了zygote调用forkSystemServer()方法fork了SystemServer进程。看一下fork
- 基于 svm 的金融咨询情感分析
ouprince
NLPsvm情感分析
详细代码与代码说明可见我的github:https://github.com/ouprince/svm处理流程:(1)金融咨询处理1.利用7万多条利好/利空语料(已经标注好的,分为1正性,-1负性两类),首先采用B-gram卡方差提取特征词汇2.使用卡方提取的特征词为每一篇咨询建立向量表示模型3.使用向量进行svm分割,训练语料80%,测试语料20%,并评估模型准确率,保存模型。4.加载保存的模型
- metasploit内网篇之域控内信息收集(十一)
暴躁的小胡!!!
内网渗透安全web安全网络
常用信息收集模块auxiliary/scanner/discovery/arp_sweep#基于arp协议发现内网存活主机,这不能通过代理使用auxiliary/scanner/portscan/ack#基于tcp的ack回复进行端口扫描,默认扫描1-10000端口auxiliary/scanner/portscan/tcp#基于tcp进行端口扫描,默认扫描1-10000端口auxiliary/s
- 【华为OD机考真题】- 小明能到达的最大坐标值(C&D卷)(Java)
bug菌¹
华为odc语言java华为OD机考真题华为OD小明能到达的最大坐标值
本文收录于「2025华为OD机试真题(Java版)」专栏,手把手带你零基础教学华为OD机试。本题集提供最优题解思路,解题步骤,代码解析,复杂度分析及最优题解源码等,支持多语言题解,助你轻松拿捏OD机考,一举上岸!安利大家关注&&收藏&&订阅!题库正在疯狂收录中,up!up!up!!提醒:拒绝一切代考/替考,违法必究!本人所写题库均搜集于互联网。 订阅福利:一次订阅,可永久免费阅读,提供在线答疑解
- 软件测试之使用Requests库进行接口测试
头疼的程序员
软件测试测试工具
文章目录前言Requests库是什么为什么要用Requests库进行接口测试安装Requests库Requests库使用发送GET请求发送带查询参数的GET请求响应内容格式添加请求头信息发送一个POST请求查看响应内容断言请求超时Cookie与Session模拟登录参考目录前言阅读本文前请注意最后编辑时间,文章内容可能与目前最新的技术发展情况相去甚远。欢迎各位评论与私信,指出错误或是进行交流等。本
- KNN算法性能优化技巧与实战案例
可问 可问春风
算法性能优化
KNN算法性能优化技巧与实战案例K最近邻(KNN)在分类和回归任务中表现稳健,但其计算复杂度高、内存消耗大成为IT项目中的主要瓶颈。以下从算法优化、数据结构、工程实践三方面深入解析性能提升策略,并附典型应用案例。一、核心性能瓶颈维度挑战描述计算复杂度单次预测需计算全部训练样本距离,时间复杂度为(n=样本数,d=特征维度)内存占用需全量存储训练数据,大规模数据集难以加载高维灾难高维数据中距离计算失去
- LLaMA-Factory 训练数据默认使用 instruction、input、output 三个 key
背太阳的牧羊人
模型微调llama人工智能大模型微调
在LLaMA-Factory进行SFT(Directivesupervisionfine-tuning指令监督微调)时,训练数据的格式非常重要,因为大模型依赖标准化的数据结构来学习指令-响应模式。identity.json文件的数据采用了“instruction”、“input”、“output”这三个key,它们的作用如下:Key作用示例“instruction”代表用户给AI的指令(问题或任务
- Web三要素:CSS之Flex/Grid布局(4)
双囍菜菜
前端随记前端css
CSS布局革命:Flex与Grid的双子星战法文章目录CSS布局革命:Flex与Grid的双子星战法一、布局进化史:从洪荒时代到现代文明二、Flex布局:一维空间的舞蹈家2.1核心概念深度解析容器属性详解:2.2典型应用场景实战导航栏布局(React示例)垂直居中(Vue示例)三、Grid布局:二维空间的指挥官3.1网格系统深度解析核心概念图解:3.2高级布局技巧实战响应式网格(React示例)复
- UI自动化测试之CSS Selector 定位秘籍:解锁 WEB UI 自动化测试的高效之道
做测试的小薄
测试进阶cssseleniumUI自动化测试元素定位方式
在WebUI自动化测试中,元素定位是实现自动化操作的核心步骤。SeleniumWebDriver提供了多种元素定位方式,其中CSSSelector是一种功能强大且灵活的定位方法。它基于CSS选择器语法,能够快速、精准地定位目标元素,尤其适用于复杂的DOM结构。本文将深入解析CSSSelector的工作原理、使用技巧以及需要注意的事项,帮助你在自动化测试中更高效地运用这一工具。一、CSSSelect
- 通信之PDH准同步数字系列
玖Yee
信息与通信
PDH-准同步数字系列(PlesiochronousDigitalHierarchy):是数字通信系统中的一种数字传输系列,采用在数字通信网的每个节点上都分别设置高精度时钟的方式,这些时钟信号有统一标准速率,但各时钟间存在微小差别,并非真正的同步,所以叫“准同步”。速率等级两大体系三个标准:国际上PDH有两大系列三个标准。以欧洲系列为例,各次群容纳的E1数量呈4倍关系,比如可将4个2Mbit/s复
- Matlab多种算法解决未来杯B的多分类问题
Subject.625Ruben
算法分类机器学习数学建模未来杯matlab人工智能
1.读取数据首先,我们从Excel文件中读取训练集和测试集:2.训练集划分我们将80%的数据用于训练,20%用于验证。3.训练多个模型我们选取8种常见分类模型,并存储预测结果。fori=1:length(modelNames)switchmodelNames{i}case'MultinomialLogisticRegression'B=mnrfit(X_train,Y_train,'model',
- 【prompt实战】知乎问题解答专家
姚瑞南
prompt实战应用案例prompt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)#Role:知乎问题解答分类专家##Profile:你是一个知乎问题解答分类专家,主要帮助用户解答各类领域专业问题,包括但不限于金融领域、职场问题、互联网领域、科技领域、人工智能领域
- 程序员必看!DeepSeek全栈开发指南:从代码生成到分布式训练的黑科技解析
AI创享派
后端
一、DeepSeek技术新突破:程序员必须掌握的MoE架构实战2025年2月25日,DeepSeek开源了专为MoE模型设计的DeepEP通信库,这项技术革新直接影响了分布式训练和推理效率。该库支持FP8精度与NVLink/RDMA技术,吞吐量提升3倍以上,特别适合处理千亿级参数的分布式任务。对于后端工程师而言,DeepEP的以下特性值得关注:计算-通信重叠机制:通过回调函数实现GPU资源动态分配
- AtCoder Beginner Contest 370 A-E 题解
AKDreamer_HeXY
AtCoderBeginnerContests题解算法c++数据结构贪心算法
A.RaiseBothHands题意给你L,R(0≤L,R≤1)L,R\(0\leL,R\le1)L,R(0≤L,R≤1),分别代表举左手和右手,若只举左手输出Yes,只举右手输出No,否则输出Invalid思路若L=RL=RL=R则为invalid,其余L=1L=1L=1输出Yes,R=1R=1R=1输出NoC++代码#includeusingnamespacestd;intl,r;intmai
- 架构模式之黑板模式
weixin_30518397
c/c++游戏数据库
一、定义黑板模式是一种常用的架构模式,应用中的多种不同数据处理逻辑相互影响和协同来完成数据分析处理。黑板模式允许多个消息读写者同时存在,消息的生产者和消费者完全分开。这就像一个黑板,任何一个教授(消息的生产者)都可以在其上书写消息,任何一个学生(消息的消费者)都可以从黑板上读取消息,两者在空间和时间上可以解耦,并且互不干扰。这种模式对于没有确定解决方案策略的问题是有用的。二、模式组成黑板模式由3个
- 提出机器人自主学习新范式,深大团队最新顶会论文,刷新6大复杂任务SOTA
量子位
关注前沿科技量子位让机器人轻松学习复杂技能有新框架了!深圳大学大数据系统计算技术国家工程实验室李坚强教授团队联合鹏城国家实验室、北京理工莫斯科大学,提出了奖励函数与策略协同进化框架ROSKA。在多个高维度机器人任务上,在仅使用89%训练样本的情况下,比现有SOTA方法平均性能提升95.3%。众所周知,随着机器人技术的快速发展,其应用已渗透至日常生活和工业生产场景。然而在多自由度机器人控制领域,传统
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 第20篇:从零开始构建NLP项目之电商用户评论分析:模型训练阶段
Gemini技术窝
自然语言处理人工智能深度学习AIGC机器学习nlplangchain
大家好,今天我们继续探讨如何从零开始构建一个NLP项目,特别是电商用户评论分析中的模型训练阶段。模型训练是NLP项目的核心环节,通过合理的调参和优化,可以显著提升模型性能。本文将详细介绍模型训练的步骤,并展示如何使用LangChain库进行模型训练、调参和优化。文章目录项目的背景和目标模型训练的详细步骤安装依赖包流程图1.准备数据2.定义模型3.训练模型4.评估模型5.调参与优化常见错误和注意事项
- 使用yolo训练自己的模型数据遇到的问题
次次皮
YOLO深度学习人工智能
1、报错:NolabelsfoundinD:\xxx\valid\labels.cache查找网上的文章大多都是说文件目录没按规定创建,但我检查了我的目录没问题,后来发现是labels文件夹里的txt文件和images文件夹的图片没有一一对应,对应好之后问题解决2、解决完上个问题之后还是不报上面的错了但还是FatalPythonerror:Aborted;Restartingkernel...检查
- 《架构300讲》学习笔记(201-250)
newProxyInstance
笔记架构
前言内容来自B站IT老齐架构300讲内容。201小心selectforupdate,有效规避索引选择性锁表202设计模式之建造者模式的用途20320分钟上手ELK日志监控系统分类:【ELK】204设计模式之门面模式Facade205设计模式之适配器模式Adapter206经典设计!如何让RabbitMQ支持消息延迟投递207Docker容器基于NFS实现跨容器文件共享208数据向上追溯场景该如何优
- Qt之动画编程之窗体透明度效果
我不是程序员~~~~
Qt实战qtandroid开发语言
#ifndefOPACITY_WIDGET_H#defineOPACITY_WIDGET_H#include#includeclassopacity_widget:publicQWidget{Q_OBJECTQ_PROPERTY(qrealopacityREADwindowOpacityWRITEsetWindowOpacity)public:opacity_widget(QWidget*pare
- 【AI】Transformer布道:让AI学会“左顾右盼”的超级大脑!(扫盲帖)
碣石潇湘无限路
人工智能transformer深度学习
在LLM爆火的时代,如果还不了解Transformer就太落伍了,下面我第一次尝试用一种更日常、更口语化的方式,把Transformer这个模型讲个大概。你可以想象我们是从“什么是注意力”开始,一步步搭积木,直到把整个Transformer这台“机器”组装起来,然后再看看它能干什么、怎么训练、为什么厉害。主要目的就是帮助更多的非AI专业的人群入门和了解实现AGI的底层架构。1.为什么要有Trans
- 数据结构--栈详解
梓色系
暑期打卡数据结构数据结构java开发语言
前言大家好呀,今天我们学习数据结构之栈篇,这是一种很简单的数据结构,今天我们将从概念,用法和模拟实现三个面开始学习一,概念和性质栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(LastInFirstOut)的原则。压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。出栈:栈的删除操作叫做出
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- 孪生网络模型,当训练集与测试集共用一个数据集时,训练准确率为100%,而测试准确率仍在50%左右浮动
bug菌¹
全栈Bug调优(实战版)pytorch机器学习
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述【问题】孪生网络模型,测试效果异常:当训练集与测试集共用一个数据集(样本、标签完全相同)时,训练准确率为100%,而测试准确率仍在50%左右浮动(正常来说测试的都
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一