前提
最近公司在做有需求在做分布式限流,调研的限流框架大概有
1、spring cloud gateway集成redis限流,但属于网关层限流
2、阿里Sentinel,功能强大、带监控平台
3、srping cloud hystrix,属于接口层限流,提供线程池与信号量两种方式
4、其他:redission、手撸代码
实际需求情况属于业务端限流,redission更加方便,使用更加灵活,下面介绍下redission分布式限流如何使用及原理:
一、使用
使用很简单、如下
// 1、 声明一个限流器
RRateLimiter rateLimiter = redissonClient.getRateLimiter(key);
// 2、 设置速率,5秒中产生3个令牌
rateLimiter.trySetRate(RateType.OVERALL, 3, 5, RateIntervalUnit.SECONDS);
// 3、试图获取一个令牌,获取到返回true
rateLimiter.tryAcquire(1)
二、原理
1、getRateLimiter
// 声明一个限流器 名称 叫key
redissonClient.getRateLimiter(key)
2、trySetRate
trySetRate方法跟进去底层实现如下:
@Override
public RFuture trySetRateAsync(RateType type, long rate, long rateInterval, RateIntervalUnit unit) {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"redis.call('hsetnx', KEYS[1], 'rate', ARGV[1]);"
+ "redis.call('hsetnx', KEYS[1], 'interval', ARGV[2]);"
+ "return redis.call('hsetnx', KEYS[1], 'type', ARGV[3]);",
Collections.
举个例子,更容易理解:
比如下面这段代码,5秒钟产生3个令牌,并且所有实例共享(RateType.OVERALL所有实例共享、RateType.CLIENT单实例端共享)
trySetRate(RateType.OVERALL, 3, 5, RateIntervalUnit.SECONDS);
那么redis中就会设置3个参数:
hsetnx,key,rate,3
hsetnx,key,interval,5
hsetnx,key,type,0
接着看tryAcquire(1)方法:底层源码如下
private RFuture tryAcquireAsync(RedisCommand command, Long value) {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
"local rate = redis.call('hget', KEYS[1], 'rate');" //1
+ "local interval = redis.call('hget', KEYS[1], 'interval');" //2
+ "local type = redis.call('hget', KEYS[1], 'type');" //3
+ "assert(rate ~= false and interval ~= false and type ~= false, 'RateLimiter is not initialized')" //4
+ "local valueName = KEYS[2];" //5
+ "if type == 1 then "
+ "valueName = KEYS[3];" //6
+ "end;"
+ "local currentValue = redis.call('get', valueName); " //7
+ "if currentValue ~= false then "
+ "if tonumber(currentValue) < tonumber(ARGV[1]) then " //8
+ "return redis.call('pttl', valueName); "
+ "else "
+ "redis.call('decrby', valueName, ARGV[1]); " //9
+ "return nil; "
+ "end; "
+ "else " //10
+ "redis.call('set', valueName, rate, 'px', interval); "
+ "redis.call('decrby', valueName, ARGV[1]); "
+ "return nil; "
+ "end;",
Arrays.
第1、2、3备注行是获取上一步set的3个值:rate、interval、type,如果这3个值没有设置,直接返回rateLimiter没有被初始化。
第5备注行声明一个变量叫valueName 值为KEYS[2],KEYS[2]对应的值是getValueName()方法,getValueName()返回的就是上面第一步getRateLimiter我们设置的key;如果type=1,表示全局共享,那么valueName 的值改为取KEYS[3],KEYS[3]对应的值为getClientValueName(),查看getClientValueName()源码:
String getClientValueName() {
return suffixName(getValueName(), commandExecutor.getConnectionManager().getId().toString());
}
ConnectionManager().getId()如下:
public interface ConnectionManager {
UUID getId();
省略...
}
这个getId()是每个客户端初始化的时候生成的UUID,即每个客户端的getId是唯一的,这也就验证了trySetRate方法中RateType.ALL与RateType.PER_CLIENT的作用。
- 接着看第7标准行,获取valueName对应的值currentValue;首次获取肯定为空,那么看第10标准行else的逻辑
- set valueName 3 px 5,设置key=valueName value=3 过期时间为5秒
- decrby valueName 1,将上面valueName的值减1
- 那么如果第二次访问,第7标注行返回的值存在,将会走第8标注行,紧接着走如下判断
- 如果当前valueName的值也就是3,小于要获得的令牌数量(tryAcquire方法中的入参),那么说明当前时间内(key的有效期5秒内),令牌的数量已经被用完,返回pttl(key的剩余过期时间);反之说明桶中有足够的令牌,获取之后将会把桶中的令牌数量减1,至此结束。
总结
redission分布式限流采用令牌桶思想和固定时间窗口,trySetRate方法设置桶的大小,利用redis key过期机制达到时间窗口目的,控制固定时间窗口内允许通过的请求量。