面试知识点--基础篇

文章目录

  • 前言
  • 一、排序
    • 1. 冒泡排序
    • 2. 选择排序
    • 3. 插入排序
    • 4. 快速单边循环排序
    • 5. 快速双边循环排序
    • 6. 二分查找
  • 二、集合
    • 1.List
    • 2.Map


前言

提示:以下是本篇文章正文内容,下面案例可供参考

一、排序

1. 冒泡排序

冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。

时间复杂度:O(n²)

public class BubbleSort {

    /**
     * 冒泡排序
     * 1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
     * 2. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
     * 3. 针对所有的元素重复以上的步骤,除了最后一个。
     * 4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较
     */
    @Test
    public void bubbleSortDemo() {
        Integer[] array = {1, 12, 6, 19, 18, 9, 66, 89};
        for (int i = 0; i < array.length - 1; i++) {
            boolean mark = false; //标记是否有交换数据,如果没有交换数据则表明数组已是有序数组,无需再进行排序
            for (int j = 0; j < array.length - 1 - i; j++) {
                if (array[j] > array[j + 1]) {
                    int temp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = temp;
                    mark = true ;
                }
            }
            if(!mark){
                //没有交换数据则表明数组已是有序数组,无需再进行排序
                break;
            }
            System.out.println(Arrays.toString(array));
        }
//        System.out.println(Arrays.toString(array));
    }

    /**
     * 冒泡排序加强版
     * 记录最后一次交换索引的位置
     *
     */
    @Test
    public void bubbleSortPlusDemo() {
        Integer[] array = {1, 12, 6, 19, 18, 9, 66, 89};
        int lastIndex =  array.length - 1;
        while (true) {
            int index = 0;
            for (int j = 0; j <lastIndex; j++) {
                System.out.println("array : "+Arrays.toString(array)+" ::: "+j);
                if (array[j] > array[j + 1]) {
                    int temp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = temp;
                    //记录最后一次交换索引的位置
                    index = j;
                }
            }
            //记录最后一次交换索引的位置
            lastIndex = index;
            if(lastIndex==0){
                break;
            }
            System.out.println(Arrays.toString(array));
        }
//        System.out.println(Arrays.toString(array));
    }
}

2. 选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾。以此类推,直到全部待排序的数据元素的个数为零。选择排序是不稳定的排序方法

最好复杂度:O(n^2)
最差复杂度:O(n^2)

public class SelectionSort {

    /**
     * 选择排序 是一种简单直观的排序算法。
     * 1. 第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,
     * 2. 再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾。
     * 3. 以此类推,直到全部待排序的数据元素的个数为零。选择排序是不稳定的排序方法
     */
    @Test
    public void selectionSortDemo() {
        Integer[] array = {1, 12, 6, 19, 18, 9, 66, 89};

        for (int i = 0; i < array.length; i++) {
            int tempIndex = i;//用于记录最小索引
            for (int j = i; j < array.length; j++) {
                //判断最小值
                if(array[tempIndex] > array[j]){
                    tempIndex = j; // 获取最小索引
                }
            }
            //与最小索引进行替换
            int temp = array[i];
            array[i] = array[tempIndex];
            array[tempIndex] = temp;
        }
        System.out.println(Arrays.toString(array));
    }
}

3. 插入排序

插入排序,一般也被称为直接插入排序。对于少量元素的排序,它是一个有效的算法 。
插入排序是一种最简单的排序方法,它的基本思想是将一个记录插入到已经排好序的有序表中,从而一个新的、记录数增1的有序表。在其实现过程使用双层循环,外层循环对除了第一个元素之外的所有元素,内层循环对当前元素前面有序表进行待插入位置查找,并进行移动

空间复杂度:O(1)
时间复杂度:O(N^(1-2))

public class InsertionSort {

    /**
     * 插入排序
     * 将数组分为两个区域,排序区和未排序区,每一轮从未排序区选取第一个元素与排序区做对比,直到对比结束。默认第一个是排序好的
     * 例:[6, 5, 2]
     *      1. 默认6是排序好的,5是未排序的 ---> 6>5 交换位置  -->[5, 6, 2]
     *      2. 5,6是排序好的,2是未排序的 ---> 2<6  6往后移一位,然后2还要与5比较  2<5  --》[2, 5, 6]  直到2找到合适位置
     */

    @Test
    public void insertionSortDemo() {
        Integer[] array = {1, 12, 6, 19, 18, 9, 66, 89};

        for (int i = 1; i < array.length; i++) {//默认第一个是排序好的,所以要从索引为1的位置开始
            int insertVal = array[i]; // 待插入的值
            int index = i - 1; //待比较的索引
            while (index >= 0) {
                if (insertVal < array[index]) {//如果待插入的值比前面的值小
                    array[index + 1] = array[index]; //那么比较的值往后移一位
                    index--;
                }else{
                    break;
                }
            }
            //插入值
            array[index + 1] = insertVal;
            System.out.println(Arrays.toString(array));
        }
//        System.out.println(Arrays.toString(array));
    }

    @Test
    public void insertionSortDemo02() {
        Integer[] array = {1, 12, 6, 19, 18, 9, 66, 89};

        for (int i = 1; i < array.length; i++) {
            for (int j = i - 1; j >= 0; j--) {
                if (array[j + 1] < array[j]) {
                    int temp = array[j + 1];
                    array[j + 1] = array[j];
                    array[j] = temp;
                } else {
                    break;
                }
            }
            System.out.println(Arrays.toString(array));
        }
//        System.out.println(Arrays.toString(array));
    }
}

4. 快速单边循环排序

快速排序采用的是分治思想,即在一个无序的序列中选取一个任意的基准元素pivot,利用pivot将待排序的序列分成两部分,前面部分元素均小于或等于基准元素,后面部分均大于或等于基准元素,然后采用递归的方法分别对前后两部分重复上述操作,直到将无序序列排列成有序序列

public class QuickSort {
    @Test
    public void quickSortDemo() {
        Integer[] array = {1, 12, 6, 19, 18, 9, 66, 89};
        recursionQuickSort(array, 0, array.length - 1);
        System.out.println(Arrays.toString(array));
    }

    /**
     * 递归调用
     *
     * @param array
     * @param startIndex
     * @param endIndex
     */
    public void recursionQuickSort(Integer[] array, Integer startIndex, Integer endIndex) {
        if (startIndex >= endIndex) {//如果起始边界大于等于结束边界  结束递归
            return;
        }
        //获取基准点的索引位置,此时比基准点小的全在左侧,比基准点大的全在右侧,可以分而治之
        Integer pvIndex = quickSort(array, startIndex, endIndex);
        //分而治之-->对基准点左侧元素递归调用
        recursionQuickSort(array, startIndex, pvIndex - 1);
        //分而治之-->对基准点右侧元素递归调用
        recursionQuickSort(array, pvIndex + 1, endIndex);
    }

    /**
     * 单边循环快速排序---->基准点选择最右侧得元素
     *  1. 选择右侧元素做为基准点
     *  2. I 指针维护小于基准点的边界,也就是每次交换的目标索引
     *  3. J 指针负责找到比基准点小的元素,一旦找到则与 I 索引交换
     *  4. 最后交换基准点与 I 交换, 因为基准点选择是的右侧的, I 一定是大于基准点的,所以大于基准点的放在右
     *
     * @param array
     */
    public int quickSort(Integer[] array, Integer startIndex, Integer endIndex) {
        int pv = array[endIndex];//设置基准点  基准点选择最右侧得元素
        int j = startIndex; //设置比基准点小的元素索引
        for (int i = startIndex; i < endIndex; i++) {
            if (array[i] < pv) { //如果当前元素比基准点小 那么将当前元素与基准点大的元素进行交换
                int temp = array[i];
                array[i] = array[j];
                array[j] = temp;
                j++;  //默认比基准点小的元素索引为0,一旦发现比基准点小的元素就与J交换位置,此时就能保证比基准点小的元素全在基准点的左侧
            }
        }
        //调换基准点元素,因为基准点选择的是最右侧得元素,所以与 j(此时的j是++后的) 互换位置,换过去的一定是大于基准点的元素
        array[endIndex] = array[j];
        array[j] = pv;
//        System.out.println(Arrays.toString(array));
        return j;
    }
}

5. 快速双边循环排序

快速排序采用的是分治思想,即在一个无序的序列中选取一个任意的基准元素pivot,利用pivot将待排序的序列分成两部分,前面部分元素均小于或等于基准元素,后面部分均大于或等于基准元素,然后采用递归的方法分别对前后两部分重复上述操作,直到将无序序列排列成有序序列

public class QuickSort {
    @Test
    public void quickSortDemo() {
        Integer[] array = {1, 12, 6, 19, 18, 9, 66, 89};
        recursionQuickSort(array, 0, array.length - 1);
        System.out.println(Arrays.toString(array));
    }

    /**
     * 递归调用
     *
     * @param array
     * @param startIndex
     * @param endIndex
     */
    public void recursionQuickSort(Integer[] array, Integer startIndex, Integer endIndex) {
        if (startIndex >= endIndex) {//如果起始边界大于等于结束边界  结束递归
            return;
        }
        //获取基准点的索引位置,此时比基准点小的全在左侧,比基准点大的全在右侧,可以分而治之
        Integer pvIndex = quickSort(array, startIndex, endIndex);
        //分而治之-->对基准点左侧元素递归调用
        recursionQuickSort(array, startIndex, pvIndex - 1);
        //分而治之-->对基准点右侧元素递归调用
        recursionQuickSort(array, pvIndex + 1, endIndex);
    }

    /**
     * 双边循环快速排序---->基准点选择最左侧的元素
     *  1. 选择左侧元素做为基准点
     *  2. rl指针负责从右向左找比基准点小的元素,lr指针负责从左向右找比基准点大的元素。
     *  3. 一旦找到,二者交换 直到 rl == lr 说明两个指针重合,结束循环
     *  4. 最后交换基准点位置
     *
     * @param array
     */
    public int quickSort(Integer[] array, Integer startIndex, Integer endIndex) {
        Integer pv = array[startIndex]; //确定基准点--以最左侧为基准点
        Integer lrIndex = startIndex;//确定比基准点大的索引--》左-右
        Integer rlIndex = endIndex;//确定比基准点小的索引--》右-左

        while (rlIndex > lrIndex) {
            //从右向左找比基准点小的索引
            while (rlIndex > lrIndex && pv <= array[rlIndex]) {
                rlIndex--;
            }

            //从左向右找比基准点大的索引
            while (rlIndex > lrIndex && pv >= array[lrIndex]) {
                lrIndex++;
            }

            //互换位置
            int temp = array[lrIndex];
            array[lrIndex] = array[rlIndex];
            array[rlIndex] = temp;
        }

        //基准点换位置
        array[startIndex] = array[rlIndex];
        array[rlIndex] = pv;
        return rlIndex;
    }
}

6. 二分查找

折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是:(这里假设数组元素呈升序排列)将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止;如 果xa[n/2],则我们只要在数组a的右 半部继续搜索x。

public class BinarySearch {

    @Test
    public void binarySearchDemo() {
        //二分查找默认有序数组
        Integer[] array = {1, 6, 9, 12, 18, 19, 66, 89};
        //调用二分查找方法
        int index = binarySearch(array, 0, array.length, 12);
        System.out.println(index);
    }

    /**
     * 二分查找
     * 折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。
     * 它的基本思想是:(这里假设数组元素呈升序排列)将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,
     * 算法终止;如 果xa[n/2],则我们只要在数组a的右 半部继续搜索x。
     *
     * @param array
     * @param leftRange  左边界
     * @param rightRange 右边界
     * @param target     目标元素
     * @return
     */
    public int binarySearch(Integer[] array, Integer leftRange, Integer rightRange, Integer target) {
        while (rightRange >= leftRange) {
            //获取中间索引位置  防止整数溢出
            int middleIndex = (leftRange + rightRange) >>> 1; // 第一种解决办法
            //推导:middleIndex = (leftRange + rightRange)/2 ==>leftRange - leftRange/2 + rightRange/2 ==>leftRange + (rightRange - leftRange) / 2;
//          int middleIndex = leftRange + (rightRange - leftRange) / 2; // 第二解决办法
            if (array[middleIndex] == target) {//中间值与目标值正好相等
                return middleIndex;
            } else if (array[middleIndex] < target) {//中间值小于目标值
                leftRange = middleIndex + 1; // 设置左边界
            } else if (array[middleIndex] > target) {//中间值大于目标值
                rightRange = middleIndex - 1;// 设置右边界
            }
        }
        return -1;
    }
}

二、集合

1.List

深入了解Collection的实现类

1. ArrayList扩容机制

  1. ArrayList是懒惰扩容机制,即没有添加元素前即使指定了容量,也不会真正创建数组
  2. add(E e)首次扩容为10,非首次扩容为上次数组长度的1.5倍
  3. addAll(Collection c) 首次扩容会将默认长度10与集合长度做对比那个大用哪个,非首次扩容会对比原容量的1.5倍与集合长度做对比,那个大用哪个。

2. ArrayList遍历时可以修改集合吗?

ArrayList是 fail-fast 的典型代表,遍历时不可以修改集合。在遍历时会拿到集合的长度,如果集合增加或减少那么长度就会改变,遍历时发现长度变化,则会直接报错。
CopyOnWriteArrayList是 fail-safe 的典型代表,遍历时可以修改集合。在遍历时会复制集合,当集合被修改时会创建新的集合,不会影响遍历的集合

3. ArrayList 和 LinkedList的区别?

  1. ArrayList的底层是数组,内存是连续的,可以利用cpu缓存。 LinkedList的底层是双向链表,内存无需连续。
  2. ArrayList基于索引的随机访问效率高,基于内容的随机访问效率和 LinkedList一样,都需要从头开始遍历。
  3. ArrayList的尾部插入,删除速度快,无需移动数组,越靠近头部的插入,删除越慢,因为需要移动数组。
  4. LinkedList头尾插入,删除性能高。中间插入删除效率低,主要因为从头遍历比较耗时。

2.Map

1. Map 1,7 和 1.8有何不同?

1.7:底层使用数组+链表
1.8:底层使用数组+链表或红黑树

2. 为何使用红黑树?为何不直接用红黑树?

  1. 防止链表长度超长时影响性能,所以使用红黑树。
  2. 树化是一种偶然情况,是用来防止攻击的。正常情况下在负载因子为0.75.链表长度为8出现的概率是极低的。
  3. 链表长度设置为8,就是为了降低树化的机率。
  4. 链表的查询效率为O(1),红黑树的查询效率为O(log2 N),而且红黑树的TreeNode比链表Node更占空间。

3. 链表何时会树化,红黑树何时会退化成链表?

  1. 链表长度超过阈值(8)且数组长度大于64,满足以上链表会进化成红黑树。
  2. 数组扩容时拆分红黑树的元素个数小于等于6,则会退化成链表。
  3. 删除树节点时,若root 、root.left、root.right、root.let.let有一个为null也会退化成链表。

4. 多线程下对Map进行put造成数据错乱?
面试知识点--基础篇_第1张图片
5. Map1.7 扩容为什么会造成死链

因为JDK1.7 Map使用头插法,在多线程下扩容时容易造成死链。例:链表中有a,b两个元素,其中a的下一个元素是b,当线程T1,T2同时对数组进行扩容时,假设T2先执行,因为头插法扩容后的顺序为b,a,此时b的下一个元素时a。由于扩容不会对元素进行更改,此时b指向a,同时a又指向b,当T1线程对数组进行扩容时就会造成死链。

面试知识点--基础篇_第2张图片
面试知识点--基础篇_第3张图片

面试知识点--基础篇_第4张图片
6. Map的key是否可以为null,对象作为key应如何处理?

  1. HashMap的key可以为null,其余Map的实现则不可以(tableMap)。
  2. 对象作为key应重写hashCode方法和equals方法,且key的内容不可以被修改。

你可能感兴趣的:(面试知识点,面试,排序算法,算法)