DCGAN对GAN的改善在于使用深度卷积网络代替全连接网络
全部代码:
import torch
from torch import nn
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader,Dataset
import torchvision
import os
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
class Discirmintor(nn.Module):
def __init__(self):
super(Discirmintor, self).__init__()
self.conv1=nn.Conv2d(in_channels=1,out_channels=32,kernel_size=3,stride=2,padding=1)
self.bn1=nn.BatchNorm2d(num_features=32,momentum=0.8)
self.conv2=nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3,stride=2,padding=1)
self.bn2=nn.BatchNorm2d(num_features=64,momentum=0.8)
self.conv3=nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=2,padding=1)
self.bn3=nn.BatchNorm2d(num_features=128,momentum=0.8)
self.avg=nn.AvgPool2d(kernel_size=3)
self.flatten=nn.Flatten()
self.fc=nn.Linear(128,1)
self.lr=nn.LeakyReLU(0.2)
self.sigmoid=nn.Sigmoid()
def forward(self,x):
x=x.view(-1,1,28,28)
x=self.lr(self.bn1(self.conv1(x)))
x=self.lr(self.bn2(self.conv2(x)))
x=self.lr(self.bn3(self.conv3(x)))
x=self.avg(x)
x=x.view(-1,128)
x=self.fc(x)
x=self.sigmoid(x)
return x
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc=nn.Linear(noise_size,7*7*256)
self.up1=nn.UpsamplingNearest2d(scale_factor=2)
self.conv1=nn.Conv2d(in_channels=256,out_channels=128,kernel_size=3,padding=1)
self.bn1=nn.BatchNorm2d(num_features=128,momentum=0.8)
self.up2=nn.UpsamplingNearest2d(scale_factor=2)
self.conv2=nn.Conv2d(in_channels=128,out_channels=64,kernel_size=3,padding=1)
self.bn2=nn.BatchNorm2d(num_features=64,momentum=0.8)
self.conv3=nn.Conv2d(in_channels=64,out_channels=1,kernel_size=3,padding=1)
self.relu=nn.ReLU()
self.tanh=nn.Tanh()
def forward(self,x):
x=self.fc(x)
x=self.relu(x)
x=x.view(-1,256,7,7)
x=self.relu(self.bn1(self.conv1(self.up1(x))))
x=self.relu(self.bn2(self.conv2(self.up2(x))))
x=self.conv3(x)
x=self.tanh(x)
return x
def to_img(image):
image=0.5*(image+1)
image=torch.clamp(image,0,1)
image=image.view(-1,28,28,1)
return image
def save_img(fake_image,epoch):
r, c = 5, 5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i, j].imshow(fake_image[cnt, :, :, 0],cmap='gray')
axs[i, j].axis('off')
cnt += 1
fig.savefig("images/DCGAN-Mnist/epoch_{}.png".format(epoch + 1))
plt.close()
def train(epochs):
for epoch in range(epochs):
for idx,(img,_) in enumerate(dataloader):
img=img.to(device)
num_img=img.size(0)
real_img=img.view(num_img,-1)
real_label=torch.ones(num_img,1)
real_label=real_label.to(device)
fake_img=torch.randn(num_img,noise_size)
fake_img=fake_img.to(device)
fake_label=torch.zeros(num_img,1)
fake_label=fake_label.to(device)
real_out=D(real_img)
d_loss_real=criterion(real_out,real_label)
fake_img=G(fake_img).detach()
fake_out=D(fake_img)
d_loss_fake=criterion(fake_out,fake_label)
d_loss=d_loss_real+d_loss_fake
optimizer_D.zero_grad()
d_loss.backward()
optimizer_D.step()
fake_img=torch.randn(num_img,noise_size)
fake_img=fake_img.to(device)
fake_img=G(fake_img)
fake_out=D(fake_img)
g_loss=criterion(fake_out,real_label)
optimizer_G.zero_grad()
g_loss.backward()
optimizer_G.step()
print('epoch :{}, d_loss:{}, g_loss:{} '.format(epoch,d_loss.item(),g_loss.item()))
fake_image=to_img(fake_img.cpu().data)
save_img(fake_image,epoch)
torch.save(D.state_dict(), 'models/DCGAN-Mnist/discrimintor.pth')
torch.save(G.state_dict(),'models/DCGAN-Mnist/generator.pth')
if __name__ == '__main__':
transformer = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5,), (0.5,))
])
dataset=MNIST(root='mnist',train=True,transform=transformer,download=True)
dataloader=DataLoader(dataset=dataset,shuffle=True,batch_size=512)
epoch=500
noise_size=100
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
D = Discirmintor()
G = Generator()
D = D.to(device)
G = G.to(device)
criterion = nn.BCELoss()
optimizer_G = torch.optim.Adam(G.parameters(), lr=0.0003)
optimizer_D = torch.optim.Adam(D.parameters(), lr=0.0001)
train(epoch)
训练250个epoch的结果