- 英伟达(NVIDIA)芯片全解析:专业分类、应用场景与真实案例
嵌入式Jerry
AI分类人工智能数据挖掘嵌入式硬件linux数据分析算法
引言你知道吗?你每天使用的智能手机、AI语音助手、自动驾驶汽车,甚至是电影特效背后,都有英伟达(NVIDIA)的芯片在默默工作。NVIDIA不仅仅是“游戏显卡”的代名词,它的GPU和AI计算平台已经广泛应用于人工智能(AI)、自动驾驶、医疗影像、工业自动化、智能家居等领域。那么,NVIDIA的芯片有哪些分类?它们分别用在哪里?普通人又能从哪些场景感受到它的存在?今天,我们就来用最通俗易懂的方式,带
- chatgpt赋能python:PythonUDS:让你的汽车掌握更多技能
qq_43479892
ChatGptchatgpt汽车计算机
PythonUDS:让你的汽车掌握更多技能UDS(UnifiedDiagnosticServices)是一种汽车电子控制单元(ECU)通信协议,用于车辆的诊断和测试。PythonUDS是用Python编程语言实现的UDS客户端和服务器实现,并且为汽车行业提供了许多有用的功能。什么是PythonUDS?PythonUDS是一种用于处理汽车诊断数据和通信的Python库。它可以帮助你轻松地解析和操作U
- 什么是机器学习?
CM莫问
机器学习模型机器学习人工智能算法
一、概念(维基百科)机器学习是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。二、主要特点机器学习的主要特点包括:1、数据驱动:机器学习模型的性能主要依赖于输入的数据。数据的质量和数量直接影响模型的准确性和泛化能力,所谓“Garbagein,garbag
- 机器学习,我们主要学习什么?
悠然的笔记本
机器学习机器学习
机器学习的发展历程机器学习的发展历程,大致分为以下几个阶段:1.起源与早期探索(20世纪40年代-60年代)1949年:Hebb提出了基于神经心理学的学习机制,开启了机器学习的先河1950年代:机器学习的起源与人工智能的探索紧密相连。例如,1956年,达特茅斯会议标志着人工智能的诞生,机器学习作为其重要分支也开始受到关注1960年代:出现了早期的机器学习算法,如1967年诞生的K最近邻算法(KNN
- 傻傻分不清?云存储、云计算与分布式存储、分布式计算是一回事吗?
IPFS星际无限
IPFS星际无限分布式分布式计算
随着互联网的蓬勃兴起,大数据、人工智能、物联网、云计算与云存储等这些专业词汇在大众视野内出现的频率越来越高,再加上近几年分布式技术异军突起,更使得分布式存储、分布式计算等成为热词。然而,很多人对这些名词都一知半解,所以本文将主要和大家聊一聊,云存储、云计算与分布式存储、分布式计算的联系与区别。一、云存储与云计算1、云存储云存储(CloudStorage)是一种网上在线存储的模式,也就是把数据存放在
- 编程王炸来袭,DeepSeek+IDEA
会java的怪蜀黍
javaintellij-ideajavaide
*引言*2025年的春节可以说是人工智能在中国史上飘红的一段历史时刻,年后上班的第一天,便马不停蹄的尝试新技能。今天的科技在飞速发展,编程领域的人工智能工具犹如雨后春笋般涌现。其中,DeepSeek则以其卓越的性能和智能化的功能,迅速在众多开发者中赢得了青睐。对于Java开发者而言,将DeepSeek集成到IDEA中,就如同为自己的编程之路配备了一位智能助手,大幅提升开发效率,让编程变得更加轻松愉
- 中美人工智能发展对比与博弈:现状、挑战与未来走向
2501_90255623
人工智能
摘要人工智能(AI)作为当今科技领域的核心驱动力,深刻影响着全球经济、政治和社会格局。中美两国在AI领域处于领先地位,各自具备独特的优势与发展路径。本文深入剖析中美AI发展的现状,从技术创新、产业应用、政策环境等多维度进行对比,探讨两国在AI发展过程中面临的挑战以及未来的发展走向,旨在为把握全球AI发展趋势提供参考。一、引言人工智能技术自诞生以来,经历了多次起伏,如今已进入快速发展阶段。其在图像识
- 第一个问题:AI会威胁人类吗?
释迦呼呼
AI一千问人工智能
第一个问题:AI会威胁人类吗?对于这个问题,我的回答是:AI本身并不会威胁人类,但其是否构成威胁取决于人类如何设计、使用和监管它。下面我将从几个角度详细分析。AI的本质:人类的工具AI(人工智能)是由人类创造的工具,它的行为和决策完全基于人类设计的算法和输入的数据。换句话说,AI没有自己的意识、意图或独立的目标,因此它本身并不具备威胁人类的动机或能力。它的作用是由开发者、使用者和管理者决定的。AI
- 在低功耗MCU上实现人工智能和机器学习
电子科技圈
SiliconLabs人工智能机器学习嵌入式硬件经验分享科技物联网mcu
作者:SiliconLabs人工智能(AI)和机器学习(ML)技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器(MCU)中,从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式系统不可或缺的一部分,凭借其成本效益、高能效以及可靠的性能,现在能够支持AI/ML应用。这种集成化在可穿戴电子产品、智能家居设备和工业自动化等应用领域中,从AI/ML功能中获得的效益尤为显著。具备AI优化功能的
- 《AI与NLP:开启元宇宙社交互动新纪元》
人工智能深度学习
在科技飞速发展的当下,元宇宙正从概念逐步走向现实,成为人们关注的焦点。而在元宇宙诸多令人瞩目的特性中,社交互动体验是其核心魅力之一。人工智能(AI)与自然语言处理(NLP)技术的迅猛发展,为元宇宙社交互动带来了前所未有的变革与提升,深刻地影响着用户在虚拟世界中的社交方式与体验。自然语言交互,打破沟通壁垒在早期的元宇宙雏形中,用户与虚拟环境、其他用户的交互多依赖于简单的指令输入或有限的动作操作,这种
- 函数调用和 Java 与 Spring AI 模型的集成
算法资料吧!
javaspring人工智能
SpringAI是一个功能强大的SpringFramework项目,它为Java开发人员带来了人工智能(AI)功能。通过将AI模型集成到Java应用程序中,SpringAI简化了创建智能应用程序的过程,同时利用了Spring生态系统的稳健性。本文将指导您完成使用SpringAI将AI模型集成到Java应用程序中的步骤,特别关注允许AI模型与外部数据源和服务动态交互的函数调用机制。SpringAIS
- DeepSeek 到底是什么类型的应用,其核心功能是什么?
AndrewHZ
python生活算法深度学习人工智能语言模型deepseek
DeepSeek是一款多用途的人工智能工具,其核心功能基于大模型技术,覆盖内容生成、数据分析、个性化服务及复杂任务处理等多个领域。以下从应用类型和核心功能两方面展开分析:一、DeepSeek的应用类型通用型人工智能助手DeepSeek被设计为跨行业的通用型AI,适用于生活、学习、工作等场景。例如:生活场景:提供旅游推荐(如黔南的景点、美食)、诗歌创作、儿童故事生成等。专业场景:在金融、保险等领域,
- 使用LlamaIndex进行Token计数的实战指南
llzwxh888
自然语言处理人工智能python
在人工智能领域,特别是在自然语言处理(NLP)任务中,理解和跟踪Token的使用情况是非常重要的。这篇文章将介绍如何使用LlamaIndex库来进行Token计数,并提供一些实用的代码示例,以便你在自己的项目中应用这些技术。环境设置首先,我们需要设置回调和服务上下文。通过全局设置,我们可以在不需要每次查询时都传递这些设置的情况下使用它们。importosos.environ["OPENAI_API
- 一个完全免费、私有且本地运行的搜索聚合器-FreeAskInternet
星霜笔记
开源关注简介免费源码笔记
什么是FreeAskInternetFreeAskInternet是一个完全免费、私有且本地运行的搜索聚合器,使用LLM生成答案,无需GPU。用户可以提出一个问题,系统将使用searxng进行多引擎搜索,并将搜索结果组合到ChatGPT3.5LLM中,并根据搜索结果生成答案。所有进程都在本地运行,不需要GPU或OpenAI或GoogleAPI密钥。特征️完全免费(不需要任何API密钥)完全本地化(
- 大模型入门指南:非常详细,从零基础到精通,收藏这一篇就够了!
程序员辣条
人工智能语言模型大模型学习AI大模型入门AI大模型
前言随着ChatGPT的到来,大模型[1](LargeLanguageModel,简称LLM)成了新时代的buzzword,各种GPT产品百花齐放。大多数人直接用现有产品就可以了,但对于喜欢刨根问底的程序员来说,能够在本地运行会更有意思。但由于没有相关背景,笔者一开始在接触时,很多GitHub上的搭建教程看得是云里雾里,而且这方面的介绍文章要不就是太晦涩难懂,要不就是太大众小白,于是就有了这篇文章
- 清华大学第5弹: 《DeepSeek与AI幻觉》 - 清华大学DeepSeek全套资料完整版 - 持续更新 - PDF免费下载
jiswordsman
人工智能pdf
由清华大学新闻与传播学院与人工智能学院双聘教授沈阳教授团队倾力打造的《DeepSeek与AI幻觉》,全面呈现,共计38页。《DeepSeek与AI幻觉》报告探讨了AI幻觉的成因、评测方法及其影响,并以DeepSeek模型为例,分析数据偏差、知识固化等问题如何导致幻觉现象。报告还提出缓解策略,如联网搜索、提示词优化,并探讨AI幻觉在科学创新和艺术创作中的潜在价值。点击链接免费下载《DeepSeek与
- 人工智能基础:从零开始讲解AI的基本概念、发展历程及其核心技术
一碗黄焖鸡三碗米饭
人工智能前沿与实践人工智能架构机器学习深度学习
人工智能基础:从零开始讲解AI的基本概念、发展历程及其核心技术人工智能(AI)正以前所未有的速度发展,渗透到各行各业,改变着我们的生活方式和工作模式。从自动驾驶到语音助手,从推荐系统到智能制造,人工智能技术无处不在。然而,许多人对于人工智能的了解仍停留在表面,甚至对其中的一些核心概念感到陌生。本文将围绕人工智能的基础概念、发展历程及核心技术进行详细讲解。我们将通过代码示例和表格对比,帮助大家深入理
- 人工智能时代,程序员如何保持核心竞争力?
大道归简
人工智能AIGC
一、AI辅助编程对程序员工作的影响AI辅助编程工具正在迅速改变程序员的日常工作实践。这些工具提供了强大的功能,如智能代码补全、自动代码生成和代码重构等,极大地提高了编程效率。例如,GitHubCopilot可以根据上下文自动生成代码片段,而Tabnine则能提供智能代码补全建议。这些工具不仅加快了编码速度,还能帮助程序员减少常见错误,提高代码质量。然而,过度依赖AI工具也可能带来一些潜在风险:编程
- 数字人源码源头搭建技术全攻略,支持OEM
余18538162800)
python
引言在人工智能与多媒体技术迅猛发展的当下,数字人已从概念构想逐步走进现实应用,广泛渗透于娱乐、教育、医疗、金融等多个领域。搭建数字人源码系统是一项综合性的技术工程,融合了计算机图形学、人工智能、语音处理等多学科前沿技术。本文将深入剖析数字人源码搭建的技术细节,为开发者提供详尽的技术开发指南。技术选型与架构设计图形渲染技术实时渲染引擎:Unity:作为一款跨平台的实时渲染引擎,Unity在数字人开发
- 数据飞轮:激活数据中台的数据驱动引擎
Earth explosion
kafka
在数字化转型的浪潮中,企业面临着如何有效利用海量数据驱动业务增长的挑战。数据中台,作为企业数据集成和分析的关键基础设施,往往未能充分发挥其潜力,成为数据的沉睡之地。数据飞轮作为一种新兴的数据驱动模型,提供了唤醒数据中台并实现数据流动的新思路。本文将探讨数据飞轮的概念、构建方法以及如何通过数据飞轮实现数据中台的活力焕发。随着人工智能和大数据技术的发展,企业拥有了收集和处理前所未有的数据量的能力。然而
- 大语言模型基础
MatrixSparse
大模型人工智能语言模型自然语言处理人工智能
简介AI大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型”两层含义,二者结合产生了一种新的人工智能模式,即模型在大规模数据集上完成了预训练后无需微调,或仅需要少量数据的微调,就能直接支撑各类应用。AI大模型主要分为三类:大语言模型、CV大模型和多模态大模型,我将分别介绍它们的背景知识、关键技术、演进路线和挑战。什么是大语言模型大语言模型(LargeLanguageModel,LL
- 一文介绍DeepSeek的模型蒸馏和模型量化技术
江湖人称麻花滕
人工智能架构chatgpt开源语言模型
1关于DeepSeek最近大火的DeepSeek给中国AI市场带来了很多热度,在DeepSeek的官网,也反复提及“模型蒸馏”技术。大模型的模型蒸馏和模型量化是当前人工智能领域中重要的研究方向,它们对于提高模型的部署效率、降低资源消耗具有重要意义。2模型蒸馏(ModelDistillation)2.1定义与原理模型蒸馏是一种知识迁移的方法旨在将知识从一个大型的教师模型(TeacherModel)转
- AI训练师团队管理运营思路
姚瑞南
意图识别训练流程及规范智能客服AI项目管理人工智能AIGC语言模型自然语言处理
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录目录大纲1.团队定位2.业务概览3.团队分工4.运营全流程5.衡量目标一、团队定位二、业务概览三、业务分配四、运营流程及步骤1.运营流程2.运营步骤五、指标观测目录大纲1.团队定
- DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来
人工智能专属驿站
计算机视觉人工智能
DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来在城市化快速发展的今天,交通拥堵已成为全球大中城市的“通病”,严重影响人们的出行效率和生活质量。然而,随着人工智能技术的不断进步,特别是DeepSeek这样的先进模型的出现,交通流量预测与优化迎来了新的曙光。DeepSeek凭借其强大的时空预测模型和强化学习框架,为交通流量预测和信号优化提供了全新的解决方案。它能够整合多源数据,包括地磁传感
- AIGC训练效率与模型优化的深入探讨
DARLING Zero two♡
话题AIGC
文章目录1.AIGC概述2.AIGC模型训练效率的重要性3.模型优化的概念与目标4.模型优化策略4.1学习率调节4.2模型架构选择4.3数据预处理与增强4.4正则化技术4.5量化与剪枝5.代码示例6.结论人工智能领域的发展,人工智能生成内容(AIGC)越来越受关注。AIGC能够通过学习大量数据生成高质量内容,但训练效率和模型优化仍然是关键的研究方向。本博客将深入探AIGC的训练效率,与模型优化的相
- 【零基础保姆级教程】DeepSeek小白速成指南:从入门到实战,1小时掌握AI神器!
emmm形成中
人工智能python
【零基础保姆级教程】DeepSeek小白速成指南:从入门到实战,1小时掌握AI神器!date:2025-02-2220:00:00tags:人工智能新手教程效率工具categories:技术实战前言你是否羡慕别人用AI工具高效产出文案、代码甚至数据分析报告?是否因英语不好或技术门槛而对DeepSeek望而却步?本文将手把手教你零代码基础1小时玩转DeepSeek,覆盖注册、提问技巧、API配置到实
- 2025年普通人转向人工智能运维(AIOps)学习建议(附最新技术实践与资源)
emmm形成中
人工智能运维学习
2025年普通人转向人工智能运维(AIOps)学习建议(附最新技术实践与资源)一、学习路径规划:分阶段掌握核心技能1.基础能力构建(3-6个月)传统运维技能Linux与Shell脚本:掌握Linux系统管理、性能调优及常用命令(如awk、sed处理日志)。监控工具:学习Prometheus、Zabbix等工具,理解指标采集与告警规则配置。自动化运维:熟悉Ansible、Jenkins等工具,编写自
- 【Llama3:8b】手把手教你如何在本地部署 自己的 LLM大模型
AI大模型..
langchainllama人工智能大模型LLMai大模型大模型部署
一、为什么需要本地部署属于自己的大模型?趋势:我们正处于AI人工智能时代,各行各业的公司和产品都在向AI靠拢。打造垂直领域的AI模型将成为每个公司未来的发展趋势。数据安全:在无法掌握核心算法的情况下,许多公司选择使用大公司的成熟方案。然而,这涉及到数据安全的问题。训练垂直定制化的大模型需要大量数据,而数据是公司的核心资产和基石。没有公司愿意将这些关键数据上传到外部服务器,这是公司的命脉所在。本地部
- 【大模型应用开发 动手做AI Agent】大模型就是Agent的大脑
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】大模型就是Agent的大脑关键词:大模型,AIAgent,智能决策,任务导向,知识表示,交互式学习,混合智能1.背景介绍1.1问题由来随着人工智能(AI)技术的发展,尤其是深度学习和自然语言处理(NLP)技术的进步,越来越多的应用场景开始采用AI模型来解决复杂的决策问题。然而,当前的AI模型大多依赖于大模型的预训练知识,这些模型虽然在通用知识获取上取得了显著进
- 独立开发者灵感日报:简化您生活的 IT 聊天机器人
前端后花园
前端热门开源项目生活机器人百度人工智能自动化AI编程
独立开发者产品日刊,每日汇集ProductHunt热榜产品介绍,⚡️1句Slogan榨干产品灵魂,⚡️3秒get全球独立开发者的爆款灵感。关注小前,每日捕获全球产品灵感。这是日刊第28篇文章。FleetAICopilotSlogan:简化您生活的IT聊天机器人标签:人工智能·机器人·科技为什么值得推荐:FleetAICopilot是您新的AI驱动的IT助手,可简化设备管理并转换日常IT任务。它通过
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包.
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email: ken.wug@gmail.com
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2.
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多