教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集

引言

为了从图片分割出我们想要的特征,我们采用BiSeNet作为分割模型,并且在自己制作的数据集上进行训练测试。注:训练是在linux环境下的,Win下训练可能会有点问题。

一、下载BiSeNet网络的安装包

1、下载地址:GitHub - CoinCheung/BiSeNet: Add bisenetv2. My implementation of BiSeNet

2、下载解压到你的目录中,文件结构如下图所示: 

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第1张图片

二、制作相关数据集

1、我们采用labelme工具来进行数据标注,labelme使用方法这里就不具体叙述了。

2、经过步骤1,我们可以得到原图JPG文件以及对应的Json文件,如下图:

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第2张图片

3、 将json文件转换为可视化的分割图片

我们这里借鉴了https://github.com/caozhiwei1994/labelme2dataset链接中的方法,将链接文件下载并解压到任意目录中,打开后有三个文件如下图:

 进入到labelme2BisSeNet文件夹中,并且将步骤1得到的原图和JSON文件放入其中,如下图(PV是我数据集的名称,PV中就是JPG和JSON):

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第3张图片

 执行json_to_dataset.py文件代码,也就是下面的代码(注意修改自己的文件地址):

import argparse
import json
import os
import os.path as osp
import warnings
import PIL.Image
import yaml
from labelme import utils
import base64
def main():
    count = os.listdir("E:\File\Pycharm\BiSeNet-master\datasets\labelme2dataset-main\labelme2BiSeNet\PV") #数据集的地址
    for i in range(0, len(count)):
        path = os.path.join("./PV", count[i]) #注意好文件地址
        if os.path.isfile(path) and path.endswith('json'):
            data = json.load(open(path))
            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')
            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = {'_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value
            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))
            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
            captions = ['{}: {}'.format(lv, ln)
                        for ln, lv in label_name_to_value.items()]
            lbl_viz = utils.draw_label(lbl, img, captions)
            out_dir = osp.basename(count[i]).replace('.', '_')
            out_dir = osp.join(osp.dirname(count[i]), out_dir)
            out_dir = osp.join("output", out_dir)
            if not osp.exists(out_dir):
                #os.mkdir(out_dir)
                os.makedirs(out_dir)
            PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
            utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
            PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
            with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
                for lbl_name in label_names:
                    f.write(lbl_name + '\n')
            warnings.warn('info.yaml is being replaced by label_names.txt')
            info = dict(label_names=label_names)
            with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
                yaml.safe_dump(info, f, default_flow_style=False)
            print('Saved to: %s' % out_dir)
if __name__ == '__main__':
    main()

注意:执行这一步代码可能会出现错误:“labelme.utils”没有“draw_label”属性。

解决方法:主要是labelme版本的问题,降低版本即可:

pip install labelme==3.16.7

执行完之后,得到output文件夹,output文件夹下文件(可视化分割)如下图:

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第4张图片

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第5张图片

 4、得到成对的JPG_PNG训练图片

首先,我们在labelme2BiSeNet目录下新建txt,里面包含了我们标记的所有类(我们这里是三类,包括背景),如下图:

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第6张图片

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第7张图片

 接着,运行get_png.py文件,即下面的代码:

import os
from PIL import Image
import numpy as np


def main():
    # 读取原文件夹
    count = os.listdir("PV") #注意修改为自己的地址
    for i in range(0, len(count)):
        # 如果里的文件以jpg结尾
        # 则寻找它对应的png
        if count[i].endswith("jpg"):
            path = os.path.join("PV", count[i]) #注意修改为自己的地址
            img = Image.open(path)
            if not os.path.exists('jpg_png/jpg'):
                os.makedirs('jpg_png/jpg')
            img.save(os.path.join("jpg_png/jpg", count[i]))
            # 找到对应的png
            path = "output/" + count[i].split(".")[0] + "_json/label.png"
            img = Image.open(path)
            # 找到全局的类
            class_txt = open("class_name.txt", "r")
            class_name = class_txt.read().splitlines()
            # ["_background_","a","b"]
            # 打开json文件里面存在的类,称其为局部类
            with open("output/" + count[i].split(".")[0] + "_json/label_names.txt", "r") as f:
                names = f.read().splitlines()
                # ["_background_","b"]
                new = Image.new("RGB", [np.shape(img)[1], np.shape(img)[0]])
                # print('new:',new)
                for name in names:
                    index_json = names.index(name)
                    index_all = class_name.index(name)
                    # 将局部类转换成为全局类
                    new = new + np.expand_dims(index_all * (np.array(img) == index_json), -1)
            new = Image.fromarray(np.uint8(new))
            print('new:',new)
            if not os.path.exists('jpg_png/png'):
                os.makedirs('jpg_png/png')
            new.save(os.path.join("jpg_png/png", count[i].replace("jpg", "png")))
            print(np.max(new), np.min(new))

if __name__ == '__main__':
    main()

 执行以上代码,会获得jpg_png文件,jpg文件存放了原图,png存放了与之对应的24位灰度图(肉眼看都是黑色的,因为类别都是按照像素值划分的,看上去都是黑的其实像素值都是0,1什么的):

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第8张图片

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第9张图片

5、然而BiSeNet需要的是8位的灰度图,上面是24位的,需要我们继续转化,执行get_dataset.py文件,即以下代码:

import cv2
import os
from PIL import Image

#if picture is jpg,you can use jpg2png
jpg_read = "jpg_png/jpg/"
if not os.path.exists('dataset/gt_png'):
    os.makedirs('dataset/gt_png')
png_write = "dataset/gt_png/"
jpg_names = os.listdir(jpg_read)
for j in jpg_names:
    img = Image.open(jpg_read + j)
    j = j.split(".")
    if j[-1] == "jpg":
        j[-1] = "png"
        j = str.join(".", j)
        # r,g,b,a=img.split()
        # img=Image.merge("RGB",(r,g,b))
        to_save_path = png_write + j
        img.save(to_save_path)
    else:
        continue

#24bit to 8bit
bit24_dir = 'jpg_png/png'      #上一步保存.png图像文件夹
if not os.path.exists('dataset/label_png'):
    os.makedirs('dataset/label_png')
bit8_dir = 'dataset/label_png'
png_names = os.listdir(bit24_dir)
for i in png_names:
    img = cv2.imread(bit24_dir+'/'+i)
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    cv2.imencode('.png', gray)[1].tofile(bit8_dir+'/'+i)


 执行完之后,得到dataset文件,里面存放了成对的训练图片,如下图:

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第10张图片

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第11张图片

由于BiSeNet网络需要保证所有图片大小保持一致,这样测试不会出错,如果你的训练图片大小都一致就可以不用看下面代码,下面代码是resize和crop(也就是分别执行resize.py和crop.py文件):

# resize.py
import cv2
import os
import shutil


def main(path):
    for root, dirs, files in os.walk(path):
        for file in files:
            if file.endswith('.png'):
                image_name = os.path.join(root, file)
                image = cv2.imread(image_name, -1)
                crop_image = cv2.resize(image,(1080,704))
                os.remove(image_name)
                cv2.imwrite(image_name, crop_image)

image_path = './dataset/gt_png'
label_path = './dataset/label_png'
if __name__ == '__main__':
    main(image_path)
    main(label_path)

# crop.py
# 将1280×720裁剪1080×704

import cv2
import os
import shutil


def main(path):
    for root, dirs, files in os.walk(path):
        for file in files:
            if file.endswith('.png'):
                image_name = os.path.join(root, file)
                image = cv2.imread(image_name, -1)
                crop_image = image[:700,:1080]
                os.remove(image_name)
                cv2.imwrite(image_name, crop_image)

image_path = './dataset/gt_png'
label_path = './dataset/label_png'
if __name__ == '__main__':
    main(image_path)
    main(label_path)

6、获得txt文件

完成上述步骤之后,执行train_val.py以及train_val_txt.py文件,即以下代码,将数据集划分成训练集和验证集,并且得到txt文件:

# train_val.py

'''
将数据分为train val
'''

import os
import random
import shutil

total_list = []
train_list = []
val_list = []


image_path = 'dataset/gt_png'
label_path = 'dataset/label_png'

# 清空
for dir in ['train', 'val']:
    image_dir = os.path.join(image_path, dir)
    label_dir = os.path.join(label_path, dir)
    if os.path.exists(image_dir):
        shutil.rmtree(image_dir)
    os.makedirs(image_dir)
    if os.path.exists(label_dir):
        shutil.rmtree(label_dir)
    os.makedirs(label_dir)


for root, dirs, files in os.walk(image_path):
    for file in files:
        if file.endswith('png'):
            total_list.append(file)

total_size = len(total_list)
train_size = int(total_size * 0.8)
val_size = total_size-train_size

train_list = random.sample(total_list, train_size)
remain_list = list(set(total_list) - set(train_list))
val_list = random.sample(remain_list, val_size)



for file in total_list:
    image_path_0 = os.path.join(image_path, file)
    label_file = file.split('.')[0] + '.png'
    label_path_0 = os.path.join(label_path, label_file)
    if file in train_list:
        image_path_1 = os.path.join(image_path, 'train', file)
        shutil.move(image_path_0, image_path_1)

        label_path_1 = os.path.join(label_path, 'train', label_file)
        shutil.move(label_path_0, label_path_1)

    elif file in val_list:
        image_path_1 = os.path.join(image_path, 'val', file)
        shutil.move(image_path_0, image_path_1)

        label_path_1 = os.path.join(label_path, 'val', label_file)
        shutil.move(label_path_0, label_path_1)


print(len(total_list))
print(len(train_list))
print(len(val_list))
import os


def write_txt(type,txt):
    gt = os.listdir("dataset/gt_png/"+type)
    label = os.listdir("dataset/label_png/"+type)
    with open(txt, "w") as f:
        for i in gt:
            j = i.replace("gt_png","label_png")
            # 判断jpg是否存在对应的png
            if j in label:
                f.write("gt_png/"+ type + '/' + i + ","+"label_png/"+type + '/'+ j + "\n")

write_txt("train","train.txt")
write_txt("val","val.txt")

 

得到我们需要的文件,即dataset、train.txt以及val.txt,至此数据集的准备工作已经全部完成。

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第12张图片

 三、训练BiSeNet网络

1、将dataset文件中的gt_png、label_png文件夹以及train.txt和val.txt放入到BiSeNet-master/datasets/cityscapes目录下,如下图(其他两个文件后面自动生成的,这里先不管):

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第13张图片

 2、修改部分代码

这一步需要根据你自己的情况来修改代码,基本要改的就是类别数,原作者的类别数是19,可以自己全局搜索19,将所有19都改成你的类别数量(这里的类别数量包含了背景)

 除此之外,有一个比较重要的修改就是cityscapes_cv2.py文件,需要修改两个部分,如下图:

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第14张图片

 第一行默认不要动(背景类),第二行第三行改成你自己的类(因为博主除了背景只有两类),并且将‘ignoreInEval’改为False,color随意设置,trainId和name也需要修改。(这一步不改好后面训练可能会出现loss为Nan)

 接着修改下面的代码(就在文件下面),n_cats=你的类别数(包含背景),arange(类别数)

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第15张图片

  四、开始训练

博主采用的单卡训练,LInux环境:

export CUDA_VISIBLE_DEVICES=0
torchrun --nproc_per_node=1 tools/train_amp.py --config ./configs/bisenetv2_city.py

训练参数在configs/目录下的文件进行调整:

教程--从零开始使用BiSeNet(语义分割)网络训练自己的数据集_第16张图片

 详细的训练和测试命令可以参考该代码的作者github,也就是GitHub - CoinCheung/BiSeNet: Add bisenetv2. My implementation of BiSeNet

参考文章:BiSeNet训练labelme标注的语义分割数据集_setuptools==50.3.1.post20201107_无为旅人的博客-CSDN博客

如果遇到问题,欢迎在评论区留言,博主都会一一解答。

你可能感兴趣的:(语义分割算法实践,linux,深度学习,python,人工智能)