matlab求回归stats第一项为零,MATLAB解一元线性回归问题

1. 注意事项

一元线性回归模型对异常值比较敏感,应考虑在生成方程前对数据进行预处理。

对于回归分析的相关定义,请参考:

2. MATLAB中的相关函数

直接使用regress函数或polyfit函数都可直接获得表示预测变量与响应变量线性关系的方程的系数

2.1 regress函数

函数说明:多元线性回归函数

详细说明请参考:

常用方式:

[b,bint,r,rint,status] = regress(Y,X,alpha);

等式右边:

Y——响应变量数据( n×1 数值向量 )

X——预测变量数据( n×p 数值矩阵。X 的行对应于各个观测值,列对应于预测变量 )

alpha——显著性水平

等式左边:

b——系数估计值( p×1 向量,其中 p 是 X 中预测变量的数目 )

bint——系数估计值的置信区间 ( 置信边界下限和置信边界上限 )( p×2 矩阵,其中 p 是 X 中预测变量的数目 )

r——残差( p×1 向量,其中 p 是 X 中预测变量的数目 )

rint——置信区间( 诊断离群值的区间 )( p×2 矩阵,其中 p 是 X 中预测变量的数目 )

参数说明:

如果status中的第一个参数R^2接近于1且第三个参数P值小于0.05,则响应Y和X中的预测变量之间存在显著的线性回归关系

如果观测值 i 的 rint(i,:) 区间不包含零,即表明存在离群值

使用示例:

% 女子身高和腿长数据

height = [143;145;146;147;149;150;153;154;155;156;157;158;159;160;162;164];

leg_length = [88;85;88;91;92;93;93;95;96;98;97;96;98;99;100;102];

% 使用身高预测腿长(X是固定格式)

X=[height,ones(length(height),1)];

Y=leg_length;

alpha = 0.05;

[b,bint,r,rint,status] = regress(Y,X,alpha)

2.2 polyfit函数

函数说明:多项式曲线拟合函数

详细说明请参考:

常用方式:

[p,S] = polyfit(X,Y,degree);

等式右边:

X——预测变量数据( 列向量 )

Y——响应变量数据( 列向量 )

degree——多项式p的次数( 多项式拟合的次数 )( >0 )

等式左边:

p——最小二乘拟合多项式系数( 长度为 n+1,包含按降幂排列的多项式系数,最高幂为 n )

S——误差估计结构体

参数说明:

使用示例:

% 女子身高和腿长数据

height = [143;145;146;147;149;150;153;154;155;156;157;158;159;160;162;164];

leg_length = [88;85;88;91;92;93;93;95;96;98;97;96;98;99;100;102];

degree = 1;

[p,S] = polyfit(height,leg_length,degree);

2.3 polyconf函数

函数说明:计算多项式的置信区间函数

详细说明请参考:

常用方式:

[Y1,DELTA1] = polyconf(p,xdata,S,‘predopt‘,‘observation‘);

[Y2,DELTA2] = polyconf(p,xdata,S,‘alpha‘,alpha,‘predopt‘,‘curve‘);

等式右边:

p——最小二乘拟合多项式系数

xdata——预测变量数据( 列向量 )

S——误差估计结构体

‘predopt‘—— ‘observation‘ (默认值)用于计算X值处的新观测值的预测区间,或 ‘curve‘ 用于计算X值处的拟合值的置信区间

等式左边:

Y——在 x 中的每个点处计算多项式 p 所得的新观测值( 拟合值 )

DELTA——当输入参数 ‘predopt‘ 的值为 ‘observation‘ 时,得到的是用于计算X值处的新观测值的预测区间;当输入参数 ‘predopt‘ 的值为 ‘curve‘ 时,得到的是用于计算X值处的拟合值的置信区间

说明:

预测区间和置信区间的相关概念请参考百度百科和:

使用示例:

% 女子身高和腿长数据

height = [143;145;146;147;149;150;153;154;155;156;157;158;159;160;162;164];

leg_length = [88;85;88;91;92;93;93;95;96;98;97;96;98;99;100;102];

xdata = reshape(height,1,length(height));

alpha = 0.05;

% 设定多项式的次数

degree = 1;

% 多项式曲线拟合a=polyfit(x,y,n): x是预测变量,y是响应变量,a是次数为n的多项式的系数

[p,S] = polyfit(height,leg_length,degree);

% 输出S(误差估计结构体)给出Y的95%预测区间Y±DELTA

[Y1,DELTA1] = polyconf(p,xdata,S,‘alpha‘,alpha,‘predopt‘,‘observation‘);

% 输出S(误差估计结构体)给出Y的95%置信区间Y±DELTA

[Y2,DELTA2] = polyconf(p,xdata,S,‘alpha‘,alpha,‘predopt‘,‘curve‘);

2.4 polyval函数

函数说明:多项式计算函数

详细说明请参考:

常用方式:

[y,delta] = polyval(p,x,S)

等式右边:

p——最小二乘拟合多项式系数( 长度为 n+1,包含按降幂排列的多项式系数,最高幂为 n )

x——预测变量数据( 列向量 )

S——误差估计结构体

等式左边:

y——在 x 中的每个点处计算多项式 p 所得的结果

delta——预测的标准误差,以标量形式返回。通常,区间 y ± Δ 对应于大型样本的未来观测值约 68% 的预测区间,y ± 2Δ 对应于约 95% 的预测区间

使用示例:

% 女子身高和腿长数据

height = [143;145;146;147;149;150;153;154;155;156;157;158;159;160;162;164];

leg_length = [88;85;88;91;92;93;93;95;96;98;97;96;98;99;100;102];

% 设定多项式的次数

degree = 1;

[p,S] = polyfit(height,leg_length,degree);

% 多项式曲线拟合的响应值数组

[preresult,delta]=polyval(p,height,S);

3. 散点图+趋势线+95%预测区间 或 95%置信区间

使用示例:

hold on;

plot(height,leg_length,‘k+‘,height,preresult,‘r‘);

% 95%预测区间

plot(xdata,Y1+DELTA1,‘b--‘);

plot(xdata,Y1-DELTA1,‘b--‘);

legend(‘Data‘,‘Linear Fit‘,‘95% Prediction Interval‘);

xlabel(‘身高‘);

ylabel(‘腿长‘);

hold off;

hold on;

plot(height,leg_length,‘k+‘,height,preresult,‘r‘);

% 95%置信区间

plot(xdata,Y2+DELTA2,‘b--‘);

plot(xdata,Y2-DELTA2,‘b--‘);

legend(‘Data‘,‘Linear Fit‘,‘95% Confidence Interval‘);

xlabel(‘身高‘);

ylabel(‘腿长‘);

hold off;

4. 残差图

% 女子身高和腿长数据

height = [143;145;146;147;149;150;153;154;155;156;157;158;159;160;162;164];

leg_length = [88;85;88;91;92;93;93;95;96;98;97;96;98;99;100;102];

% 使用身高预测腿长(X是固定格式)

X=[height,ones(length(height),1)];

Y=leg_length;

alpha = 0.05;

[b,bint,r,rint,status] = regress(Y,X,alpha);

% 通过计算不包含 0 的残差区间 rint 来诊断离群值。

contain0 = (rint(:,1)<0 & rint(:,2)>0);

idx = find(contain0==false);

hold on

scatter(Y,r);

% 填充离群值对应的点

scatter(Y(idx),r(idx),‘b‘,‘filled‘);

xlabel(‘腿长‘);

ylabel(‘残差‘);

hold off

原文:https://www.cnblogs.com/GjqDream/p/12609233.html

你可能感兴趣的:(matlab求回归stats第一项为零,MATLAB解一元线性回归问题)