import pandas as pd import networkx as nx import matplotlib.pyplot as plt # 读取Excel文件中的数据 df = pd.read_excel("新闻情感分析结果.xlsx") # 获取主题和关键词列表 topics_and_keywords = [ [], [] ] # 构建节点 nodes = [keyword for topic_keywords in topics_and_keywords for keyword in topic_keywords] # 创建图 G = nx.Graph() # 添加节点 G.add_nodes_from(nodes) # 计算节点之间的共现关系 for text in df["Combined Text"]: text_keywords = set(text.split()) for i, topic_keywords in enumerate(topics_and_keywords): for keyword in topic_keywords: if keyword in text_keywords: for other_keyword in topic_keywords: if keyword != other_keyword and other_keyword in text_keywords: G.add_edge(keyword, other_keyword) # 计算圈(环)权重 for u, v, d in G.edges(data=True): cooccurrence_count = G.degree(u) + G.degree(v) - 2 edge_weight = d.get("weight", 0) + 1 / cooccurrence_count G[u][v]["weight"] = edge_weight # 可视化图 pos = nx.spring_layout(G, seed=42) # 设置节点的布局 nx.draw_networkx_nodes(G, pos) nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos, font_size=8, font_color="black") plt.show()