GoLang之常见数据结构实现原理-map

文章目录

  • GoLang之常见数据结构实现原理-map
    • 1.map数据结构
    • 2.bucket数据结构
    • 3.哈希冲突
    • 4.负载因子
    • 5.渐进式扩容
      • 5.1扩容的前提条件
      • 5.2增量扩容
      • 5.3等量扩容
    • 6.查找过程
    • 7.插入过程

GoLang之常见数据结构实现原理-map

1.map数据结构

Golang的map使用哈希表作为底层实现,一个哈希表里可以有多个哈希表节点,也即bucket,而每个bucket就保存了map中的一个或一组键值对。

map数据结构由runtime/map.go:hmap定义:

type hmap struct {
    count     int // 当前保存的元素个数
    ...
    B         uint8
    ...
    buckets    unsafe.Pointer // bucket数组指针,数组的大小为2^B
    ...
}

下图展示一个拥有4个bucket的map:本例中, hmap.B=2, 而hmap.buckets长度是2^B为4. 元素经过哈希运算后会落到某个bucket中进行存储。查找过程类似。
bucket很多时候被翻译为桶,所谓的哈希桶实际上就是bucket。

GoLang之常见数据结构实现原理-map_第1张图片

2.bucket数据结构

bucket数据结构由runtime/map.go:bmap定义:

type bmap struct {
    tophash [8]uint8 //存储哈希值的高8位
    data    byte[1]  //key value数据:key/key/key/.../value/value/value...
    overflow *bmap   //溢出bucket的地址
}

每个bucket可以存储8个键值对。
1.tophash是个长度为8的数组,哈希值相同的键(准确的说是哈希值低位相同的键)存入当前bucket时会将哈希值的高位存储在该数组中,以方便后续匹配。
2.data区存放的是key-value数据,存放顺序是key/key/key/…value/value/value,如此存放是为了节省字节对齐带来的空间浪费。
3.overflow 指针指向的是下一个bucket,据此将所有冲突的键连接起来。

注意:上述中data和overflow并不是在结构体中显示定义的,而是直接通过指针运算进行访问的。
下图展示bucket存放8个key-value对:

GoLang之常见数据结构实现原理-map_第2张图片

3.哈希冲突

当有两个或以上数量的键被哈希到了同一个bucket时,我们称这些键发生了冲突。Go使用链地址法来解决键冲突。
由于每个bucket可以存放8个键值对,所以同一个bucket存放超过8个键值对时就会再创建一个键值对,用类似链表的方式将bucket连接起来。

下图展示产生冲突后的map:

GoLang之常见数据结构实现原理-map_第3张图片

bucket数据结构指示下一个bucket的指针称为overflow bucket,意为当前bucket盛不下而溢出的部分。事实上哈希冲突并不是好事情,它降低了存取效率,好的哈希算法可以保证哈希值的随机性,但冲突过多也是要控制的,后面会再详细介绍。

4.负载因子

负载因子用于衡量一个哈希表冲突情况,公式为:
负载因子 = 键数量/bucket数量

例如,对于一个bucket数量为4,包含4个键值对的哈希表来说,这个哈希表的负载因子为1.

哈希表需要将负载因子控制在合适的大小,超过其阀值需要进行rehash,也即键值对重新组织:
1.哈希因子过小,说明空间利用率低
2.哈希因子过大,说明冲突严重,存取效率低
每个哈希表的实现对负载因子容忍程度不同,比如Redis实现中负载因子大于1时就会触发rehash,而Go则在在负载因子达到6.5时才会触发rehash,因为Redis的每个bucket只能存1个键值对,而Go的bucket可能存8个键值对,所以Go可以容忍更高的负载因子。

5.渐进式扩容

5.1扩容的前提条件

为了保证访问效率,当新元素将要添加进map时,都会检查是否需要扩容,扩容实际上是以空间换时间的手段。
触发扩容的条件有二个:
负载因子 > 6.5时,也即平均每个bucket存储的键值对达到6.5个。
overflow数量 > 2^15时,也即overflow数量超过32768时。

5.2增量扩容

当负载因子过大时,就新建一个bucket,新的bucket长度是原来的2倍,然后旧bucket数据搬迁到新的bucket。
考虑到如果map存储了数以亿计的key-value,一次性搬迁将会造成比较大的延时,Go采用逐步搬迁策略,即每次访问map时都会触发一次搬迁,每次搬迁2个键值对。
下图展示了包含一个bucket满载的map(为了描述方便,图中bucket省略了value区域):

GoLang之常见数据结构实现原理-map_第4张图片

当前map存储了7个键值对,只有1个bucket。此地负载因子为7。再次插入数据时将会触发扩容操作,扩容之后再将新插入键写入新的bucket。
当第8个键值对插入时,将会触发扩容,扩容后示意图如下:

GoLang之常见数据结构实现原理-map_第5张图片

hmap数据结构中oldbuckets成员指身原bucket,而buckets指向了新申请的bucket。新的键值对被插入新的bucket中。
后续对map的访问操作会触发迁移,将oldbuckets中的键值对逐步的搬迁过来。当oldbuckets中的键值对全部搬迁完毕后,删除oldbuckets。
搬迁完成后的示意图如下:

GoLang之常见数据结构实现原理-map_第6张图片

数据搬迁过程中原bucket中的键值对将存在于新bucket的前面,新插入的键值对将存在于新bucket的后面。
实际搬迁过程中比较复杂,将在后续源码分析中详细介绍。

5.3等量扩容

所谓等量扩容,实际上并不是扩大容量,buckets数量不变,重新做一遍类似增量扩容的搬迁动作,把松散的键值对重新排列一次,以使bucket的使用率更高,进而保证更快的存取。
在极端场景下,比如不断地增删,而键值对正好集中在一小部分的bucket,这样会造成overflow的bucket数量增多,但负载因子又不高,从而无法执行增量搬迁的情况,如下图所示:

GoLang之常见数据结构实现原理-map_第7张图片

上图可见,overflow的bucket中大部分是空的,访问效率会很差。此时进行一次等量扩容,即buckets数量不变,经过重新组织后overflow的bucket数量会减少,即节省了空间又会提高访问效率。

6.查找过程

查找过程如下:
1.根据key值算出哈希值
2.取哈希值低位与hmap.B取模确定bucket位置
3.取哈希值高位在tophash数组中查询
4.如果tophash[i]中存储值也哈希值相等,则去找到该bucket中的key值进行比较
5.当前bucket没有找到,则继续从下个overflow的bucket中查找(可能所查找的这个key在插入的时候产生了哈希冲突,所以通过链地址法被存到了溢出桶里)。
6.如果当前处于搬迁过程,则优先从oldbuckets查找
注:如果查找不到,也不会返回空值,而是返回相应类型的0值。

//如果查找不到,也不会返回空值,而是返回相应类型的0值
func main() {
	a := map[string]int{}
	a["a"] = 1111
	a["b"] = 222
	fmt.Println(a["a"]) //输出:1111
	fmt.Println(a["dasfas"])//输出:0
}

7.插入过程

新元素插入过程如下:
1.根据key值算出哈希值
2.取哈希值低位与hmap.B取模确定bucket位置
3.查找该key是否已经存在,如果存在则直接更新值
4.如果没找到将key,将key插入

//如果存在则直接更新值
func main() {
	a := map[string]int{}
	a["a"] = 1111
	a["b"] = 222
	fmt.Println(a["a"]) //输出:1111
	a["a"] = 4455
	fmt.Println(a["a"]) //输出:4555
}

你可能感兴趣的:(GoLang底层,数据结构,golang,散列表)