【算法训练-动态规划 五】【二维DP问题】最大正方形

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【动态规划】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。
【算法训练-动态规划 五】【二维DP问题】最大正方形_第1张图片

明确目标题后,附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍

最大正方形【MID】

来解决一道最大正方形的题目

题干

【算法训练-动态规划 五】【二维DP问题】最大正方形_第2张图片

解题思路

原题解出处按照动态规划的标准解题讨论来进行解题,理解 min(上, 左, 左上) + 1,如题,在其他动态规划方法的题解中,大都会涉及到下列形式的代码:

// 伪代码
if (matrix(i , j ) == '1') {
    dp(i, j) = min(dp(i - 1, j), dp(i, j - 1), dp(i - 1, j - 1)) + 1;
}

其中,dp(i, j) 是以 matrix(i , j )右下角 的正方形的最大边长

若某格子值为 1,则以此为右下角的正方形的、最大边长为:上面的正方形、左面的正方形或左上的正方形中,最小的那个,再加上此格

先来阐述简单共识

  • 若形成正方形(非单 1),以当前为右下角的视角看,则需要:当前格、上、左、左上都是 1
  • 可以换个角度:当前格、上、左、左上都不能受 0 的限制,才能成为正方形

【算法训练-动态规划 五】【二维DP问题】最大正方形_第3张图片
上面详解了 三者取最小 的含义:

  • 图 1:受限于左上的 0
  • 图 2:受限于上边的 0
  • 图 3:受限于左边的 0

数字表示:以此为正方形右下角的最大边长;黄色表示:格子 ? 作为右下角的正方形区域。就像 木桶的短板理论 那样——附近的最小边长,才与 ? 的最长边长有关。 此时已可得到递推公式

// 伪代码
if (grid[i][j] == '1') {
    dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1;
}

1 定义状态(定义子问题)

dp 具体定义:dp[i ][j ] 表示 「以第 i 行、第 j 列为右下角的正方形的最大边长」

为何不是 dp[i][j],回到图解中,任何一个正方形,我们都「依赖」当前格 左、上、左上三个方格的情况,但第一行的上层已经没有格子,第一列左边已经没有格子,需要做特殊 if 判断来处理,为了代码简洁,我们 假设补充 了多一行全 ‘0’、多一列全 ‘0’

2 状态转移方程(描述子问题之间的联系)

取自己左上、上方、左边最小值再加上自身

// 伪代码
if (grid[i][j] == '1') {
    dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1;
}

3 初始化状态

初始值就是将第一列 dp[row][0] 、第一行 dp[0][col] 都赋为 0,相当于已经计算了所有的第一行、第一列的 dp 值
【算法训练-动态规划 五】【二维DP问题】最大正方形_第4张图片

4 求解方向

这里采用自底向上,从最小的状态开始求解

5 找到最终解

题目要求面积。根据 「面积 = 边长 x 边长」可知,我们只需求出 最大边长 即可,定义 maxSide 表示最长边长,每次得出一个 dp,就 maxSide = max(maxSide, dp); 最终返回 return maxSide * maxSide;

代码实现

给出代码实现基本档案

基本数据结构数组
辅助数据结构
算法动态规划
技巧

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

import java.util.*;


public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     *
     * @param nums int整型一维数组
     * @return int整型一维数组
     */
    public int maximalSquare(char[][] matrix) {

        // 1 入参校验
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return 0;
        }
        // 2 定义最长边,以及获取边长
        int maxSide = 0;
        int row = matrix.length;
        int col = matrix[0].length;

        // 3 定义dp数组,dp[i][j]表示以i、j为坐标的元素作为右下角的最大正方形边长,默认初始化了两列0
        int[][] dp = new int[row + 1][col + 1];

        // 4 编写状态转移方程
        for (int i = 1; i <= row; i++) {
            for (int j = 1; j <= col; j++) {
                if (matrix[i - 1][j - 1] == '1') {
                    dp[i][j] = Math.min(dp[i - 1][j], Math.min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
                    maxSide = Math.max(maxSide, dp[i][j]);
                }
            }
        }
        return maxSide * maxSide;
    }
}

考虑到每个方格都需要参与计算,双重循环要从索引1开始(否则dp[0][0]无法进行状态转移,会数组越界),这样为了第0行第0列可以参与计算,就给dp数组补了0,也就是base case,补0后dp的第1行和第1列对应的判断元素其实是matrix的第0行和第0列,所以这里的if条件是:matrix[i - 1][j - 1] == '1'

复杂度分析

时间复杂度:O(N^2),这里 N 是数组的长度,我们写了两个 for 循环,每个 for 循环的时间复杂度都是线性的;
空间复杂度:O(N),要使用和输入数组长度相等的状态数组,因此空间复杂度是 O(N)。

你可能感兴趣的:(#,动态规划,算法,动态规划)