废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【动态规划】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。
明确目标题后,附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍。
来解决一道最大正方形的题目
原题解出处按照动态规划的标准解题讨论来进行解题,理解 min(上, 左, 左上) + 1
,如题,在其他动态规划方法的题解中,大都会涉及到下列形式的代码:
// 伪代码
if (matrix(i , j ) == '1') {
dp(i, j) = min(dp(i - 1, j), dp(i, j - 1), dp(i - 1, j - 1)) + 1;
}
其中,dp(i, j)
是以 matrix(i , j )
为 右下角 的正方形的最大边长,
若某格子值为 1,则以此为右下角的正方形的、最大边长为:上面的正方形、左面的正方形或左上的正方形中,最小的那个,再加上此格
先来阐述简单共识
数字表示:以此为正方形右下角的最大边长;黄色表示:格子 ? 作为右下角的正方形区域。就像 木桶的短板理论 那样——附近的最小边长,才与 ? 的最长边长有关。 此时已可得到递推公式
// 伪代码
if (grid[i][j] == '1') {
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1;
}
dp 具体定义:dp[i ][j ]
表示 「以第 i 行、第 j 列为右下角的正方形的最大边长」
为何不是 dp[i][j],回到图解中,任何一个正方形,我们都「依赖」当前格 左、上、左上三个方格的情况,但第一行的上层已经没有格子,第一列左边已经没有格子,需要做特殊 if 判断来处理,为了代码简洁,我们 假设补充 了多一行全 ‘0’、多一列全 ‘0’
取自己左上、上方、左边最小值再加上自身
// 伪代码
if (grid[i][j] == '1') {
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1;
}
初始值就是将第一列 dp[row][0]
、第一行 dp[0][col]
都赋为 0,相当于已经计算了所有的第一行、第一列的 dp 值
这里采用自底向上,从最小的状态开始求解
题目要求面积。根据 「面积 = 边长 x 边长」可知,我们只需求出 最大边长 即可,定义 maxSide 表示最长边长,每次得出一个 dp,就 maxSide = max(maxSide, dp);
最终返回 return maxSide * maxSide;
给出代码实现基本档案
基本数据结构:数组
辅助数据结构:无
算法:动态规划
技巧:无
其中数据结构、算法和技巧分别来自:
当然包括但不限于以上
import java.util.*;
public class Solution {
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param nums int整型一维数组
* @return int整型一维数组
*/
public int maximalSquare(char[][] matrix) {
// 1 入参校验
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return 0;
}
// 2 定义最长边,以及获取边长
int maxSide = 0;
int row = matrix.length;
int col = matrix[0].length;
// 3 定义dp数组,dp[i][j]表示以i、j为坐标的元素作为右下角的最大正方形边长,默认初始化了两列0
int[][] dp = new int[row + 1][col + 1];
// 4 编写状态转移方程
for (int i = 1; i <= row; i++) {
for (int j = 1; j <= col; j++) {
if (matrix[i - 1][j - 1] == '1') {
dp[i][j] = Math.min(dp[i - 1][j], Math.min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
maxSide = Math.max(maxSide, dp[i][j]);
}
}
}
return maxSide * maxSide;
}
}
考虑到每个方格都需要参与计算,双重循环要从索引1开始(否则dp[0][0]无法进行状态转移,会数组越界),这样为了第0行第0列可以参与计算,就给dp数组补了0,也就是base case,补0后dp的第1行和第1列对应的判断元素其实是matrix的第0行和第0列,所以这里的if条件是:matrix[i - 1][j - 1] == '1'
时间复杂度:O(N^2),这里 N 是数组的长度,我们写了两个 for 循环,每个 for 循环的时间复杂度都是线性的;
空间复杂度:O(N),要使用和输入数组长度相等的状态数组,因此空间复杂度是 O(N)。