- 【学习】《算法图解》第九章学习笔记:迪杰斯特拉算法
程序员
一、迪杰斯特拉算法概述迪杰斯特拉算法(Dijkstra'salgorithm)是一种解决带权有向图上单源最短路径问题的贪心算法,由荷兰计算机科学家艾兹赫尔·迪杰斯特拉(EdsgerW.Dijkstra)于1956年提出。该算法常用于路由协议,也可以用作其他图算法的子程序。(一)算法适用场景迪杰斯特拉算法适用于:带权有向图(每条边都有权重)所有权重都为非负值(不能有负权边)需要找出从一个顶点到图中所
- 【TVM 教程】PAPI 入门
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/性能应用程序编程接口(PerformanceApplicationProgrammingInterface,简称PAPI)是一个可在各种平台上提供性能计数器的库。在指定的运行期间,性能计数器提供处理器行为的准确底层信息,包含简单的指标,如总
- Java Class常量池和运行时常量池的区别?
java1234_小锋
javajava开发语言jvm
大家好,我是锋哥。今天分享关于【JavaClass常量池和运行时常量池的区别?】面试题。希望对大家有帮助;JavaClass常量池和运行时常量池的区别?超硬核AI学习资料,现在永久免费了!在Java中,常量池分为类常量池和运行时常量池,它们分别用于存储不同类型的常量。下面是它们之间的主要区别:1.类常量池(ClassConstantPool):定义:类常量池是指类加载时在.class文件中定义的常
- Kafka中的消费者偏移量是如何管理的?
java1234_小锋
javakafka分布式
大家好,我是锋哥。今天分享关于【Kafka中的消费者偏移量是如何管理的?】面试题。希望对大家有帮助;Kafka中的消费者偏移量是如何管理的?超硬核AI学习资料,现在永久免费了!在Kafka中,消费者的偏移量(offset)是用来追踪消费者读取消息的位置。Kafka提供了多种方式来管理消费者偏移量,确保消息能够从正确的位置继续消费。以下是Kafka中消费者偏移量的管理方式:1.自动提交(AutoCo
- Kafka的消费消息是如何传递的?
java1234_小锋
javakafka分布式
大家好,我是锋哥。今天分享关于【Kafka的消费消息是如何传递的?】面试题。希望对大家有帮助;Kafka的消费消息是如何传递的?超硬核AI学习资料,现在永久免费了!在Kafka中,消息的消费是通过消费者(Consumer)和消费者组(ConsumerGroup)来完成的。Kafka通过这种机制来传递消息并确保消息被正确消费。下面是Kafka消费消息传递的基本流程:消息生产(Producer):Ka
- Java GC是任意时候都能进行的吗?
java1234_小锋
javajava开发语言
大家好,我是锋哥。今天分享关于【JavaGC是任意时候都能进行的吗?】面试题。希望对大家有帮助;JavaGC是任意时候都能进行的吗?超硬核AI学习资料,现在永久免费了!Java的垃圾回收(GC)并不是任意时刻都能进行的。GC的执行有一定的规则和条件:垃圾回收的触发时机:堆内存不足:当Java堆内存空间不足时,垃圾回收会被触发,试图回收不再使用的对象来腾出内存。手动触发:可以通过System.gc(
- 什么是分布式系统?
大家好,我是锋哥。今天分享关于【什么是分布式系统?】面试题。希望对大家有帮助;什么是分布式系统?超硬核AI学习资料,现在永久免费了!分布式系统是指由多个独立的计算节点(计算机或设备)组成的系统,这些节点通过网络进行通信与协调,完成共同的任务。每个节点通常有自己的处理器、内存和存储,而系统的整体目标是通过这些节点的协作来提供一种统一的服务。分布式系统的主要特点:节点独立性:每个节点都有自己的硬件和操
- 【LLaMA 3实战】6、LLaMA 3上下文学习指南:从少样本提示到企业级应用实战
无心水
LLaMA3模型实战专栏llamaLLaMA3实战LLaMa3上下文AI入门程序员的AI开发第一课人工智能AI
一、上下文学习(ICL)的技术本质与LLaMA3突破(一)ICL的核心原理与模型机制上下文学习(In-ContextLearning)的本质是通过提示词激活预训练模型的元学习能力,使模型无需微调即可适应新任务。LLaMA3的ICL架构通过以下机制实现突破:任务抽象:从示例中提取输入输出映射规则,如情感分析中的正负向判断模式模式泛化:将规则迁移到新输入,支持跨领域知识迁移动态适应:实时调整注意力分布
- Kafka与RabbitMQ相比有什么优势?
java1234_小锋
javajava开发语言
大家好,我是锋哥。今天分享关于【Kafka与RabbitMQ相比有什么优势?】面试题。希望对大家有帮助;Kafka与RabbitMQ相比有什么优势?超硬核AI学习资料,现在永久免费了!Kafka与RabbitMQ在消息队列的设计和应用上有一些显著的区别,每个都有各自的优势。以下是Kafka相比RabbitMQ的几个优势:高吞吐量和低延迟:Kafka能够处理大量消息并保持高吞吐量,适用于实时数据流处
- 跨区域智能电网负荷预测:基于 PaddleFL 的创新探索
暮雨哀尘
人工智能智能电网AIGCPaddleFL数据库python可视化
跨区域智能电网负荷预测:基于PaddleFL的创新探索摘要:本文聚焦跨区域智能电网负荷预测,提出基于PaddleFL框架的联邦学习方法,整合多地区智能电网数据,实现数据隐私保护下的高精度预测,为电网调度优化提供依据,推动智能电网发展。一、引言在当今社会,电力作为经济发展的命脉,其稳定供应对于保障社会生活的正常运转和生产的持续进行具有不可替代的重要性。而智能电网作为现代电力系统的重要发展方向,通过集
- 机器学习在智能供应链中的应用:需求预测与库存优化
Blossom.118
机器学习与人工智能机器学习人工智能机器人深度学习python神经网络sklearn
在当今全球化的商业环境中,供应链管理的效率和灵活性对于企业的竞争力至关重要。智能供应链通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从原材料采购到产品交付的全流程优化。机器学习技术在智能供应链中的应用尤为突出,尤其是在需求预测和库存优化方面。本文将探讨机器学习在智能供应链中的应用,并分析其带来的机遇和挑战。一、智能供应链中的需求预测准确的需求预测是供应链管理的核心。需求预测
- 面向隐私保护的机器学习:联邦学习技术解析与应用
Blossom.118
机器学习与人工智能机器学习人工智能深度学习tensorflowpython神经网络cnn
在当今数字化时代,数据隐私和安全问题日益受到关注。随着《数据安全法》《个人信息保护法》等法律法规的实施,企业和机构在数据处理和分析过程中面临着越来越严格的合规要求。然而,机器学习模型的训练和优化往往需要大量的数据支持,这就产生了一个矛盾:如何在保护数据隐私的前提下,充分利用数据的价值进行机器学习模型的训练和优化?联邦学习(FederatedLearning)作为一种新兴的隐私保护技术,为解决这一问
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- ES6 新特性从入门到精通:100 + 代码示例带你轻松掌握(附图解教程)
北泽别胡说
新手保护期从0到1学前端javascript前端开发语言es6
本文针对JavaScript新手系统讲解ES6核心语法,涵盖变量声明、箭头函数、解构赋值、类与继承、Promise等核心模块。通过150+行带注释代码,结合「传统写法对比」和「新手避坑指南」,帮助读者3小时掌握ES6关键特性,快速应用于项目开发。一、ES6入门:为什么必须学习ES6?1.1ES6的革命性升级代码简洁性:箭头函数、模板字符串等语法减少冗余代码逻辑清晰性:class类、模块化语法让代码
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- Kyle的天机学堂学习笔记
Z2475269074
学习笔记
本文将展示一个小白从0->1完成项目的全部历练已经心得PS:要求做到真正的自我思考而不是对着教程敲代码,并借用AI进行辅佐与思考DAY1Maven子工程会继承父工程所有依赖有三套生命周期,互不干扰且同一生命周期内执行命令会以此完成之前的命令1.clean2.default(compile,test,package,install)3.site(deploy)对象DTO数据传输对象,用于服务端与客户
- DeepSeek:AI驱动的效率革命与实战案例解
weixin_45788582
人工智能aiDeepSeek
在人工智能技术的浪潮中,DeepSeek作为一款专注实现AGI(通用人工智能)的先锋工具,正通过其强大的自然语言处理(NLP)与分布式计算能力,重新定义高效办公的边界。以下通过技术解析与实战案例,展现DeepSeek如何赋能个人与企业,开启职场效率革命。一、技术革新:DeepSeek的核心竞争力深度学习赋能DeepSeek的技术架构基于BERT、Transformer等先进深度学习模型,通过构建复
- WPF学习笔记(6)——WPF+Stylet+MVVM:ListBox添加项、获取所选项、删除项、删除所选项
billy_gisboy
#WPF/MVVMwpfmvvmc#
功能描述使用Stylet框架,对WPF进行MVVM模式下的开发。不在xaml.cs中写业务逻辑,业务逻辑均在VM中,且业务逻辑只针对属性,不涉及ListBox控件。实现功能:(1)ListBox添加一个项,项具有图片、信息(2)展示一个所选项的信息(3)删除一个项(4)删除所选项实现效果首先创建学生类namespaceStyletTest.Model{publicclassStudent{////
- AI驱动的智能电网:平衡供需提高效率
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
智能电网,AI,机器学习,预测模型,优化算法,供需平衡,能源效率1.背景介绍随着全球能源需求的不断增长和可再生能源的快速发展,传统电网面临着越来越多的挑战。传统的电网结构是集中式供电,难以适应分布式能源的接入和负荷需求的波动性。智能电网应运而生,它利用先进的通信技术、传感器网络和数据分析技术,实现电网的自动化、智能化和可视化,从而提高电网的可靠性、效率和安全性。人工智能(AI)作为一种新兴技术,在
- WPF学习笔记(8)数据绑定方向与INotifyPropertyChanged
三千道应用题
WPF学习笔记wpf
数据绑定方向与INotifyPropertyChanged一、数据绑定方向1.OneWayToSource2.OneWay3.TwoWay二、INotifyPropertyChanged总结一、数据绑定方向Binding类的Mode属性可以指定数据绑定的方向:官方文档:https://learn.microsoft.com/zh-cn/dotnet/api/system.windows.data.
- 从HTML4到HTML5+CSS3,如何快速掌握?(有老版HTML基础或经验)
唐骁虎
html前端
从HTML4.0到HTML5+CSS3的升级是Web开发技术的一次重要迭代,两者在语法、功能、兼容性等方面存在显著差异。以下是具体异同点、学习注意事项及快速掌握方法:一、HTML5与HTML4.0的核心差异语义化标签HTML5新增:、、、、等,使代码结构更清晰,利于SEO和可维护性。HTML4.0依赖:主要用配合class/id实现布局,语义性较弱。多媒体支持HTML5原生支持:、标签,无需依赖F
- 【小白Java进阶之路】 2024年Java小白如何成为大牛?超详细学习路线图!
全栈陈序员
Java后端开发java学习windows
??2024年Java小白如何成为大牛?超详细学习路线图!摘要本文为Java初学者提供了一份详细的学习路线图,旨在帮助他们从基础到进阶,最终成为Java领域的专家。文章涵盖了Java基础、进阶技术、Web开发、框架与工具、软技能等多个方面,并提供了代码示例、流程图和表格,以增强理解和实践能力。关键词Java,学习路线图,进阶,Web开发,框架,工具,软技能1.Java基础1.1语法基础变量和数据类
- Java进阶学习
m0_67403013
面试学习路线阿里巴巴android前端后端
进阶学习过程的几个方面第一阶段的学习是java基础的学习和javaEE的学习。第二阶段就是java学习的进阶啦。主要是面试书籍,下面是书籍推荐:多线程、并发实战java高并发程序设计和java并发编程的艺术:——“java高并发程序设计”,这本书主要是为了看第二本书做铺垫,直接看第二本书可能会很吃力。实战java高并发程序设计主要看:前4章、5.1、5.2、5.3、5.10、5.11和第6章。——
- JAVA进阶之路
夜澜听雨声
JavaAdvancejava开发语言
JAVA进阶之路一、Java企业开发基础1.JavaWeb2.SSM框架3.Maven4.Springboot25.mybatis-plus6.前端学习(不算很重要)7.SpringSecurity(有时间再看,不重要)8.代码开发规范(不重要,有时间看)9.Git10.Linux(不重要,会用就行)二、Java企业开发进阶1.设计模式2.Redis(核心)3.消息队列RocketMQ(核心)4.
- 阿里一面凉经
一入JAVA毁终身
面试记录面试
阿里一面(凉经)先说明我大二开始接触计算机学习总共不到两年,很菜加上我比较容易紧张,所以回答的有些不尽人意,事后反思了一下确实很多地方是有问题的,大家如果看出什么问题请告知我一下,我一定虚心接受。1.主体的流程自我介绍(不过多赘述了)挑选一个项目进行深入探讨八股拷打算法2.项目拷打在自我介绍里我大概介绍了一下我的三个项目,相比字节的面试官明显流程更加固定,而且也更正式,不会会和你多聊一些学习方面的
- Python爬虫实战:使用Scrapy+Selenium+Playwright高效爬取Coursera课程信息
Python爬虫项目
2025年爬虫实战项目python爬虫scrapy微信开发语言科技selenium
前言在当今信息爆炸的时代,在线教育平台如Coursera提供了海量的高质量课程资源。对于学习者、教育研究者和数据分析师来说,获取这些平台的课程信息具有重要价值。本文将详细介绍如何使用Python爬虫技术高效爬取Coursera课程信息,并分析其中的技术难点与解决方案。1.Coursera网站分析Coursera是一个典型的现代Web应用,具有以下特点:采用React/Vue等前端框架构建,大量内容
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- 建议是先把base完全搞懂
weixin_47868976
Web云存储项目网络
并发编程日志系统啥的我只了解了一点点直接从网络层入手这个项目可行么?底层base模块没搞懂从web开始合理么?你的担心很有道理!让我来分析一下学习路径的可行性,并给你一个合理的学习建议。一、项目依赖关系分析1.模块依赖层次application/(应用层)↓强依赖net/(网络层)↓强依赖base/(基础层)↓强依赖系统调用(LinuxAPI)2.具体依赖关系Rantool从依赖分析可以看出,网络
- 同步日志系统深度解析【链式调用】【宏定义】【固定缓冲区】【线程局部存储】【RAII】
weixin_47868976
链表python
你的理解完全正确!让我结合你的项目,深入讲解同步日志的实现原理和代码。同步日志系统深度解析开始之前:没有必要一行一行理解!没有必要一行一行理解!我建议你采用更高效的学习策略:一、学习策略建议重点理解核心概念和设计思路//只需要理解这些核心概念:1.RAII模式:构造函数获取资源,析构函数释放资源2.链式调用:operatorstream()output();//手动调用输出deletelogger
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST