PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)

2021SC@SDUSC 

   接上篇博客

(3) JPEGImages:存储的就是实际的图片了

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第1张图片

找一下apple_65.jpg看看

就是这个样子的

(4) create_list.py、label_list.txt、train.txt、val.txt

import os
import os.path as osp
import re
import random

devkit_dir = './'
years = ['2007', '2012']


def get_dir(devkit_dir,  type):
    return osp.join(devkit_dir, type)


def walk_dir(devkit_dir):
    filelist_dir = get_dir(devkit_dir, 'ImageSets/Main')
    annotation_dir = get_dir(devkit_dir, 'Annotations')
    img_dir = get_dir(devkit_dir, 'JPEGImages')
    trainval_list = []
    test_list = []
    added = set()

    for _, _, files in os.walk(filelist_dir):
        for fname in files:
            img_ann_list = []
            if re.match('train\.txt', fname):
                img_ann_list = trainval_list
            elif re.match('val\.txt', fname):
                img_ann_list = test_list
            else:
                continue
            fpath = osp.join(filelist_dir, fname)
            for line in open(fpath):
                name_prefix = line.strip().split()[0]
                if name_prefix in added:
                    continue
                added.add(name_prefix)
                ann_path = osp.join(annotation_dir, name_prefix + '.xml')
                img_path = osp.join(img_dir, name_prefix + '.jpg')
                assert os.path.isfile(ann_path), 'file %s not found.' % ann_path
                assert os.path.isfile(img_path), 'file %s not found.' % img_path
                img_ann_list.append((img_path, ann_path))

    return trainval_list, test_list


def prepare_filelist(devkit_dir, output_dir):
    trainval_list = []
    test_list = []
    trainval, test = walk_dir(devkit_dir)
    trainval_list.extend(trainval)
    test_list.extend(test)
    random.shuffle(trainval_list)
    with open(osp.join(output_dir, 'train.txt'), 'w') as ftrainval:
        for item in trainval_list:
            ftrainval.write(item[0] + ' ' + item[1] + '\n')

    with open(osp.join(output_dir, 'val.txt'), 'w') as ftest:
        for item in test_list:
            ftest.write(item[0] + ' ' + item[1] + '\n')


if __name__ == '__main__':
    prepare_filelist(devkit_dir, '.')

将标注信息转换为列表进行存储。

label_list.txt:还是那三种类别

train.txt:./JPEGImages/mixed_20.jpg ./Annotations/mixed_20.xml等一系列路径

val.txt:./JPEGImages/orange_92.jpg ./Annotations/orange_92.xml等一系列路径

至此fruit-dections中的内容就是这么多了。

四、查看PaddleDetection中的内容

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第2张图片

(1) configs

各种网络的配置文件

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第3张图片

找到yolov3_mobilenet_v1_fruit.yml看看

architecture: YOLOv3
train_feed: YoloTrainFeed
eval_feed: YoloEvalFeed
test_feed: YoloTestFeed
use_gpu: true
max_iters: 20000
log_smooth_window: 20
save_dir: output
snapshot_iter: 200
metric: VOC
map_type: 11point
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
weights: output/yolov3_mobilenet_v1_fruit/best_model
num_classes: 3
finetune_exclude_pretrained_params: ['yolo_output']

YOLOv3:
  backbone: MobileNet
  yolo_head: YOLOv3Head

MobileNet:
  norm_type: sync_bn
  norm_decay: 0.
  conv_group_scale: 1
  with_extra_blocks: false

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  anchors: [[10, 13], [16, 30], [33, 23],
            [30, 61], [62, 45], [59, 119],
            [116, 90], [156, 198], [373, 326]]
  norm_decay: 0.
  ignore_thresh: 0.7
  label_smooth: true
  nms:
    background_label: -1
    keep_top_k: 100
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    score_threshold: 0.01

LearningRate:
  base_lr: 0.00001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 15000
    - 18000
  - !LinearWarmup
    start_factor: 0.
    steps: 100

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

YoloTrainFeed:
  batch_size: 1
  dataset:
    dataset_dir: dataset/fruit
    annotation: fruit-detection/train.txt
    use_default_label: false
  num_workers: 16
  bufsize: 128
  use_process: true
  mixup_epoch: -1
  sample_transforms:
  - !DecodeImage
    to_rgb: true
    with_mixup: false
  - !NormalizeBox {}
  - !ExpandImage
    max_ratio: 4.0
    mean: [123.675, 116.28, 103.53]
    prob: 0.5
  - !RandomInterpImage
    max_size: 0
    target_size: 608
  - !RandomFlipImage
    is_mask_flip: false
    is_normalized: true
    prob: 0.5
  - !NormalizeImage
    is_channel_first: false
    is_scale: true
    mean:
    - 0.485
    - 0.456
    - 0.406
    std:
    - 0.229
    - 0.224
    - 0.225
  - !Permute
    channel_first: true
    to_bgr: false
  batch_transforms:
  - !RandomShape 
    sizes: [608] 
  with_background: false

YoloEvalFeed:
  batch_size: 1
  image_shape: [3, 608, 608]
  dataset:
    dataset_dir: dataset/fruit
    annotation: fruit-detection/val.txt
    use_default_label: false
 

YoloTestFeed:
  batch_size: 1
  image_shape: [3, 608, 608]
  dataset:
    dataset_dir: dataset/fruit    annotation: fruit-detection/label_list.txt
    use_default_label: false

注意标红的地方即可。

(2)contrib

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第4张图片

行人检测和车辆检测?暂时不用管

(3)dataset: 各文件夹下有py文件,用于下载数据集的

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第5张图片

(4)demo:用于检测结果的示例图片。

(5)docs:

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第6张图片

(6)inference: 用于推断的‘?

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第7张图片

(7) ppdet:paddlepaddle检测相关文件

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第8张图片

(8) requirements.txt:所需的一些依赖

tqdm
docstring_parser @ http://github.com/willthefrog/docstring_parser/tarball/master
typeguard ; python_version >= '3.4'
tb-paddle
tb-nightly

 

(9)slim:应该是用于压缩模型的

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第9张图片

(10) tools:工具

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第10张图片

 五、进行训练

训练的代码在tools中的train.py

进入到PaddleDection目录下

在终端输入:python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml --use_tb=True --eval

如果发现错误No module named ppdet,在train.py中加入

import sys

sys.path.append("/home/aistudio/PaddleDetection")即可

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第11张图片

最后卡在了这,不过应该是训练完了,在PaddleDection目录下可以看到output文件夹:

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第12张图片

里面有一个迭代时产生的权重信息:

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第13张图片

六、进行测试一张图片

python -u tools/infer.py -c configs/yolov3_mobilenet_v1_fruit.yml -o weights=/home/aistudio/PaddleDetection/output/yolov3_mobilenet_v1_fruit/model_final --infer_img=demo/orange_71.jpg

会报错没有相关包,输入以下命令安装:

pip install docstring_parser 

pip install pycocotools

之后:

去output下看看orange_71.jpg:

PaddleDetection目标检测之水果检测(下)(yolov3_mobilenet_v1)_第14张图片

检测出来的是orange,准确率:94%。

知道了检测训练的整个流程,那么去手动标注poscal voc格式的数据,那么就可以实现检测自己想要的东西了。 然后也可以去看下相关目标检测的论文,明白其中的原理,看看源码之类的。

 

你可能感兴趣的:(神经网络,深度学习,机器学习)