读李航的《统计学习方法》时,关于拉格朗日对偶性的笔记。
在许多统计学习的约束最优化问题中,例如最大熵模型和支持向量机,常常使用拉格朗日对偶性(Lagrange duality)将原始问题转换为对偶问题,通过求解对偶问题而得到原始问题的解。
假设 f ( x ) f(x) f(x) , c i ( x ) c_i(x) ci(x) 和 h j ( x ) h_j(x) hj(x) 是定义在 R n \R^n Rn 上的连续可微函数,考虑约束最优化问题(记为 P P P ):
min x ∈ R n f ( x ) s.t. c i ( x ) ≤ 0 , i = 1 , 2 , ⋯ , k h j ( x ) = 0 , j = 1 , 2 , ⋯ , l \begin{aligned} \min_{x\in\R^n}&\, f(x) \\ \text{s.t.}&\,\, c_i(x)\leq 0,\quad i=1,2,\cdots,k \\ &\,\, h_j(x)=0, \quad j=1,2,\cdots,l \end{aligned} x∈Rnmins.t.f(x)ci(x)≤0,i=1,2,⋯,khj(x)=0,j=1,2,⋯,l
它的 Lagrangian 为:
L ( x , α , β ) = f ( x ) + ∑ i = 1 k α i c i ( x ) + ∑ j = 1 l β j h j ( x ) L(x,\alpha,\beta)=f(x)+\sum_{i=1}^{k}\alpha_ic_i(x)+\sum\limits_{j=1}^l \beta_jh_j(x) L(x,α,β)=f(x)+i=1∑kαici(x)+j=1∑lβjhj(x)
其中 α i ≥ 0 \alpha_i \geq 0 αi≥0 ;以下是一个关于 x x x 的函数,下标 P P P 代表原始问题:
θ P ( x ) = max α , β ; α i ≥ 0 L ( x , α , β ) \theta_P(x)=\max\limits_{\alpha,\beta;\,\alpha_i\geq0}L(x,\alpha,\beta) θP(x)=α,β;αi≥0maxL(x,α,β)
可以得到该函数的性质:
θ P ( x ) = { f ( x ) , x 满足原始问题的约束 + ∞ , else \theta_P(x)=\left\{ \begin{array}{ll} f(x), & x\text{ 满足原始问题的约束} \\ +\infty, &\text{else} \end{array} \right. θP(x)={f(x),+∞,x 满足原始问题的约束else
θ P ( x ) = max α , β ; α i ≥ 0 [ f ( x ) + ∑ i = 1 k α i c i ( x ) + ∑ j = 1 l β j h j ( x ) ] = + ∞ \theta_P(x)=\max\limits_{\alpha,\beta;\,\alpha_i\geq0}\left[f(x)+\sum_{i=1}^{k}\alpha_ic_i(x)+\sum\limits_{j=1}^l \beta_jh_j(x)\right]=+\infty θP(x)=α,β;αi≥0max[f(x)+i=1∑kαici(x)+j=1∑lβjhj(x)]=+∞
θ P ( x ) = f ( x ) \theta_P(x)=f(x) θP(x)=f(x)
基于 θ P ( x ) \theta_P(x) θP(x) 的性质,我们考虑其极小化问题:
min x θ P ( x ) = min x max α , β ; α i ≥ 0 L ( x , α , β ) \min_{x}\theta_P(x)=\min_{x}\max\limits_{\alpha,\beta;\,\alpha_i\geq0}L(x,\alpha,\beta) xminθP(x)=xminα,β;αi≥0maxL(x,α,β)
它与原始问题 P P P 是等价的(因为 x x x 满足约束条件时, θ P ( x ) \theta_P(x) θP(x) 和 f ( x ) f(x) f(x) 是等价的)。以上这个问题称为广义拉格朗日函数的极小极大问题。我们定义原始问题的最优值:
p ∗ = min x θ P ( x ) p^\ast=\min_x\theta_P(x) p∗=xminθP(x)
称为原始问题的值。
以下是一个关于 α \alpha α 和 β \beta β 的函数,下标 D D D 代表对偶问题:
θ D ( α , β ) = min x L ( x , α , β ) \theta_D(\alpha,\beta)=\min_xL(x,\alpha,\beta) θD(α,β)=xminL(x,α,β)
再考虑 θ D ( α , β ) \theta_D(\alpha,\beta) θD(α,β) 的极大化问题:
max α , β ; α i ≥ 0 θ D ( α , β ) = max α , β ; α i ≥ 0 min x L ( x , α , β ) \max\limits_{\alpha,\beta;\,\alpha_i\geq0}\theta_D(\alpha,\beta)=\max\limits_{\alpha,\beta;\,\alpha_i\geq0}\min_xL(x,\alpha,\beta) α,β;αi≥0maxθD(α,β)=α,β;αi≥0maxxminL(x,α,β)
该问题称为广义拉格朗日函数的极大极小问题,其还可以表示为约束最优化问题:
max α , β ; α i ≥ 0 θ D ( α , β ) = max α , β ; α i ≥ 0 min x L ( x , α , β ) s.t. α i ≥ 0 , i = 1 , 2 , ⋯ , k \begin{aligned} \max\limits_{\alpha,\beta;\,\alpha_i\geq0}&\, \theta_D(\alpha,\beta)=\max\limits_{\alpha,\beta;\,\alpha_i\geq0}\min_xL(x,\alpha,\beta) \\ \text{s.t.}&\,\, \alpha_i\geq 0, \quad i=1,2,\cdots,k \end{aligned} α,β;αi≥0maxs.t.θD(α,β)=α,β;αi≥0maxxminL(x,α,β)αi≥0,i=1,2,⋯,k
极大极小问题称为原始问题的对偶问题,定义对偶问题的最优值为:
d ∗ = max α , β ; α i ≥ 0 θ D ( α , β ) d^\ast=\max\limits_{\alpha,\beta;\,\alpha_i\geq0}\theta_D(\alpha,\beta) d∗=α,β;αi≥0maxθD(α,β)
称为对偶问题的值。
Th C.1:若原始问题和对偶问题都有最优值,则对偶问题的最优值小于等于原始问题的最优值:
d ∗ ≤ p ∗ d^\ast \leq p^\ast d∗≤p∗
证明:由前面的定义得,对于任意的 α \alpha α , β \beta β , x x x ,有:
θ D ( α , β ) = min x L ( x , α , β ) ≤ L ( x , α , β ) ≤ max α , β ; α i ≥ 0 L ( x , α , β ) = θ P ( x ) \theta_D(\alpha,\beta)=\min_xL(x,\alpha,\beta)\leq L(x,\alpha,\beta)\leq\max\limits_{\alpha,\beta;\,\alpha_i\geq0}L(x,\alpha,\beta)=\theta_P(x) θD(α,β)=xminL(x,α,β)≤L(x,α,β)≤α,β;αi≥0maxL(x,α,β)=θP(x)
即:
θ D ( α , β ) ≤ θ P ( x ) \theta_D(\alpha,\beta)\leq\theta_P(x) θD(α,β)≤θP(x)
即:
d ∗ = max α , β ; α i ≥ 0 θ D ( α , β ) ≤ min x θ P ( x ) = p ∗ d^\ast=\max\limits_{\alpha,\beta;\,\alpha_i\geq0}\theta_D(\alpha,\beta)\leq\min_x\theta_P(x)=p^\ast d∗=α,β;αi≥0maxθD(α,β)≤xminθP(x)=p∗
推论 C.1:设 x ∗ x^\ast x∗ 和 α ∗ \alpha^\ast α∗ , β ∗ \beta^\ast β∗ 分别是原始问题和最优问题的可行解(即满足约束条件),且 d ∗ = p ∗ d^\ast=p^\ast d∗=p∗ ,则 x ∗ x^\ast x∗ 和 α ∗ \alpha^\ast α∗ , β ∗ \beta^\ast β∗ 分别是原始问题和最优问题的最优解。
Th C.2:对于原始问题和对偶问题,假设:
则存在 x ∗ x^\ast x∗ , α ∗ \alpha^\ast α∗ , β ∗ \beta^\ast β∗ ,使得 x ∗ x^\ast x∗ 是原始问题的解, α ∗ \alpha^\ast α∗ , β ∗ \beta^\ast β∗ 是对偶问题的解,并且:
p ∗ = d ∗ = L ( x ∗ , α ∗ , β ∗ ) p^\ast=d^\ast=L(x^\ast,\alpha^\ast,\beta^\ast) p∗=d∗=L(x∗,α∗,β∗)
Th C.3:跟 Th C.2 一样的假设下, x ∗ x^\ast x∗ 和 α ∗ \alpha^\ast α∗ , β ∗ \beta^\ast β∗ 分别是原始问题和最优问题的可行解的充分必要条件是: x ∗ x^\ast x∗ , α ∗ \alpha^\ast α∗ , β ∗ \beta^\ast β∗ 满足 KKT 条件:
∇ x L ( x ∗ , α ∗ , β ∗ ) = 0 α i ∗ c i ( x ∗ ) = 0 , i = 1 , 2 , ⋯ , k c i ( x ∗ ) ≤ 0 , i = 1 , 2 , ⋯ , k α i ∗ ≥ 0 , i = 1 , 2 , ⋯ , k h j ( x ∗ ) = 0 , j = 1 , 2 , ⋯ , k \begin{array}{c} \nabla_x L(x^\ast,\alpha^\ast,\beta^\ast)=0 \\ \alpha_i^\ast c_i(x^\ast)=0, \quad i=1,2,\cdots,k \\ c_i(x^\ast)\leq 0, \quad i=1,2,\cdots,k \\ \alpha_i^\ast \geq 0, \quad i=1,2,\cdots,k \\ h_j(x^\ast)=0, \quad j=1,2,\cdots,k \\ \end{array} ∇xL(x∗,α∗,β∗)=0αi∗ci(x∗)=0,i=1,2,⋯,kci(x∗)≤0,i=1,2,⋯,kαi∗≥0,i=1,2,⋯,khj(x∗)=0,j=1,2,⋯,k
其中 α i ∗ c i ( x ∗ ) = 0 , i = 1 , 2 , ⋯ , k \alpha_i^\ast c_i(x^\ast)=0, \quad i=1,2,\cdots,k αi∗ci(x∗)=0,i=1,2,⋯,k 称为 KKT 的对偶互补条件。由此可知,若 α i > 0 \alpha_i \gt 0 αi>0 ,则 c i ( x ∗ ) = 0 c_i(x^\ast)=0 ci(x∗)=0 ;